K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 9 2021

\(3BM=7CM=7\left(BC-BM\right)\Rightarrow10BM=7BC\)

\(\Rightarrow BM=\dfrac{7}{10}BC\Rightarrow\overrightarrow{BM}=\dfrac{7}{10}\overrightarrow{BC}\)

Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{BC}=\overrightarrow{AB}+\dfrac{7}{10}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}-\dfrac{7}{10}\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AM}=\dfrac{3}{10}\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{AC}\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

Theo đề thì $\overrightarrow{3BM}=7\overrightarrow{MC}=-7\overrightarrow{CM}$

Lại có:

$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}$

$\Rightarrow 3\overrightarrow{AM}=3\overrightarrow{AB}+3\overrightarrow{BM}=3\overrightarrow{AB}-7\overrightarrow{CM}(1)$

$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$

$\Rightarrow 7\overrightarrow{AM}=7\overrightarrow{AC}+7\overrightarrow{CM}(2)$

Từ $(1);(2)\Rightarrow 10\overrightarrow{AM}=3\overrightarrow{AB}+7\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AM}=\frac{3}{10}\overrightarrow{AB}+\frac{7}{10}\overrightarrow{AC}$

12 tháng 3 2019

Dùng kết quả: Nếu B, C, M thẳng hàng và A M →   =   x A B →   +   y A C → thì x + y = 1 để loại các phương án A, B, D.

Đáp án C

NV
6 tháng 11 2021

\(5\overrightarrow{JB}=2\overrightarrow{JC}=2\left(\overrightarrow{JB}+\overrightarrow{BC}\right)=2\overrightarrow{JB}+2\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{JB}=\dfrac{2}{3}\overrightarrow{BC}=2\overrightarrow{BA}+2\overrightarrow{AC}\Rightarrow\overrightarrow{BJ}=2\overrightarrow{AB}-2\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}+2\overrightarrow{AB}-2\overrightarrow{AC}=3\overrightarrow{AB}-2\overrightarrow{AC}\)

12 tháng 1 2021

undefined

undefined

Lười đánh máy nên luyện chữ :))

27 tháng 6 2018

Ta có  M B → = 1 3 M C → ⇔ 3 M B → = M C → ⇔ 3 B M → = C M →

A M → = A B → + ​ B M →   ⇒ 3 A M → = 3 A B → + 3 ​ B M →      ( 1 ) A M → = A C → + ​ C M →       ( 2 )

Lấy (1) trừ (2)  ta được :

2 A M → = 3 A B → + 3 ​ B M →   − A C → + ​ C M →   = 3 A B → − A C → + ​ ( 3 B M → − C M → ) = 3 A B → − A C → + 0 → = 3 A B → − A C → ⇒ A M → = 3 2 A B → − 1 2 A C → = 3 2 u → − 1 2 v →

Đáp án A

17 tháng 12 2023

a) Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

         \(=\overrightarrow{AB}+k\overrightarrow{BC}\)

         \(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

         \(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)

             \(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)

Để \(AM\perp NP\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)

\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)

\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)

\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)

\(\Leftrightarrow17k=10\)

\(\Leftrightarrow k=\dfrac{10}{17}\)