Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BM=2AM\Rightarrow BM=\dfrac{2}{3}AB\Rightarrow\overrightarrow{MB}=\dfrac{2}{3}\overrightarrow{AB}\)
\(AN=3CN\Rightarrow CN=\dfrac{1}{4}CA\Rightarrow\overrightarrow{CN}=\dfrac{1}{4}\overrightarrow{CA}\)
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CA}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\left(\overrightarrow{CB}+\overrightarrow{BA}\right)\)
\(=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CB}+\dfrac{1}{4}\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}-\dfrac{1}{4}\overrightarrow{BC}-\dfrac{1}{4}\overrightarrow{AB}\)
\(=\dfrac{5}{12}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{BC}\)
Lời giải:
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=\frac{1}{3}\overrightarrow{BA}+\frac{3}{4}\overrightarrow{AC}\)
\(=\frac{-1}{3}\overrightarrow{AB}+\frac{3}{4}(\overrightarrow{AB}+\overrightarrow{BC})=\frac{5}{12}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{BC}\)
\(\overrightarrow{KA}=-\overrightarrow{AK}=-\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=-\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)
\(=-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)
\(\overrightarrow{KD}=\overrightarrow{AD}-\overrightarrow{AK}=\overrightarrow{AD}+\overrightarrow{KA}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)
\(=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{NP}=\overrightarrow{NC}+\overrightarrow{CP}\)
\(=\dfrac{2}{3}\overrightarrow{BC}+\dfrac{1}{3}\overrightarrow{CA}\)
\(=-\dfrac{2}{3}\overrightarrow{CB}+\dfrac{1}{3}\overrightarrow{CA}\)
\(\overrightarrow{PM}=\overrightarrow{PA}+\overrightarrow{AM}\)
\(=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{AB}\)
\(=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{CB}\right)\)
\(=\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)
\(\overrightarrow{ME}+3\overrightarrow{MC}=\overrightarrow{0}\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}\)
\(EB=2EA\Rightarrow\overrightarrow{BE}=2\overrightarrow{EA}\)
Ta có: \(\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BE}=\overrightarrow{MB}+2\overrightarrow{EA}=\overrightarrow{MB}+2\left(\overrightarrow{EM}+\overrightarrow{MA}\right)=\overrightarrow{MB}-2\overrightarrow{ME}+2\overrightarrow{MA}\)
\(\Rightarrow3\overrightarrow{ME}=\overrightarrow{MB}+2\overrightarrow{MA}\Rightarrow\overrightarrow{ME}=\dfrac{1}{3}\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{MA}\)
\(\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}=-\dfrac{1}{9}\overrightarrow{MB}-\dfrac{2}{9}\overrightarrow{MA}\)
\(\Rightarrow\dfrac{2}{9}\overrightarrow{MA}=-\dfrac{1}{9}\overrightarrow{MB}-\overrightarrow{MC}\Rightarrow\overrightarrow{MA}=-\dfrac{1}{2}\overrightarrow{MB}-\dfrac{9}{2}\overrightarrow{MC}\)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)
\(3BM=7CM=7\left(BC-BM\right)\Rightarrow10BM=7BC\)
\(\Rightarrow BM=\dfrac{7}{10}BC\Rightarrow\overrightarrow{BM}=\dfrac{7}{10}\overrightarrow{BC}\)
Ta có:
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{BC}=\overrightarrow{AB}+\dfrac{7}{10}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}-\dfrac{7}{10}\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AM}=\dfrac{3}{10}\overrightarrow{AB}+\dfrac{7}{10}\overrightarrow{AC}\)
Lời giải:
Theo đề thì $\overrightarrow{3BM}=7\overrightarrow{MC}=-7\overrightarrow{CM}$
Lại có:
$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}$
$\Rightarrow 3\overrightarrow{AM}=3\overrightarrow{AB}+3\overrightarrow{BM}=3\overrightarrow{AB}-7\overrightarrow{CM}(1)$
$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$
$\Rightarrow 7\overrightarrow{AM}=7\overrightarrow{AC}+7\overrightarrow{CM}(2)$
Từ $(1);(2)\Rightarrow 10\overrightarrow{AM}=3\overrightarrow{AB}+7\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AM}=\frac{3}{10}\overrightarrow{AB}+\frac{7}{10}\overrightarrow{AC}$