Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : tam giac AHB vuông tại H
nên AH2 =AB2 - HB2 (1)
tam giác AHC vuông tại H
nên AH2=AC2 -HC2 (2)
Từ (1) và (2) suy ra :
AB2 -HB2= AC2- HC2=AH2
suy ra :AB2+HC2=AC2+HB2
b.Ta có :AB2+DC2=AH2+HB2+HC2+HD2=(HB2+HD2)+(AH2+HC2)
=AC2+DB2
suy ra : AB2+DC=AC2+DB2
A B C H M D
a, xét tam giác CMD và tam giác BMA có : AM = MD (gt)
MB = MC do M là trung điểm của BC (Gt)
góc CMD = góc AMB (đối đỉnh )
=> tam giác CMD = tam giác BMA (c - g - c)
=> góc ABM = góc DCM (định nghĩa)
b, góc ABM = góc DCM (Câu a) mà 2 góc này so le trong
=> CD // AB (đl)
mà CA _|_ AB do tam giác ABC vuông tại A (gt)
=> CA _|_ CD (dl)
=> góc ACD = 90 (đn)
=> tam giác ACD vuông tại C (đn)
c, xét tam giác ABC và tam giác CDA có : AC chung
góc ABC = góc CDA = 90
AB = CD do tam giác CMD = tam giác BMA (câu a)
=> tam giác ABC = tam giác CDA (2cgv)
=> AD = CB (đn)
M là trung điểm của CB => CM = 1/2BC
CM = MA
do tam giác CMD = tam giác BMA (Câu a)
=> MA = 1/2BC
d,
a: AC=căn 2^2+3^2=căn 13(cm)
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
HA/HC=HB/HA
=>ΔHAB đồng dạng với ΔHCA
=>góc HAB=góc HCA
=>góc HAB+góc HAC=90 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
a) xét tam giac ABH và tam giac ADH ta có
AH=AH (canh chung)
BH=HD(gt)
goc AHB= góc AHD (=90)
-> tam giac ABH= tam giac ADH (c-g-c)
-> AB=AD (2 cạnh tương ứng)
-> tam giac ADB cân tại A
b)Xét tam giac ABH vuông tại H ta có
AB2= AH2+BH2 ( định lý pitago)
152=122+ BH2
BH2=152-122
BH2=81
BH=9
Xét tam giác AHC vuông tại H ta có
AC2=AH2+HC2 ( định lý pitago)
AC2=122+162
AC2=400
AC=20
c) ta có BC= BH+HC=9+16=25
Xét tam giác ABC ta có
BC2=252=625
AB2+AC2=152+202=625
-> BC2=AB2+AC2 (=625)
-> tam giac ABC vuông tại A (định lý pitago đảo)
d)xét tam giác ABH và tam giác EDH ta có
BH=HD (gt)
AH=HE(gt)
góc BHA= góc DHE (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc BAH= góc DEH (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AB// ED
lại có AB vuông góc AC ( tam giác ABC vuông tại A)
-> ED vuông góc AC