K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

Xét t/g AOB &t/g KOC, ta có:

OC=OB( O là TĐ của BC)

\(\widehat{AOB}\)=\(\widehat{KOC}\)

OA=OK(gt)

=> \(\Delta AOB=\Delta KOC\)(c-g-c)

=> AB= CK(2 cạnh t/ứ)

\(\widehat{BAO}\)=\(\widehat{CKO}\)(2gocs t/ứ)

mà chúng ở vị trí SLT

=>\(AB//Ck\)

Ta có:

\(AB\perp AC\)(\(\Delta ABC\)vuông tại A)

\(AB//CK\)

=> \(AC\perp Ck\)

=> \(\widehat{KCA}=\widehat{BAC}\left(=90^0\right)\)

Xét t/g vuông ABC &t/g vuông CKA, ta có:

AB=CK

AC chung

=> t/g vuông ABC= t/g vuông CKA(2cgv)

20 tháng 4 2020

Ta có: \(\Delta\)ABH vuông tại H 

=> \(AB^2=AH^2+BH^2\) ( định  lí pi ta go )  (1)

\(\Delta\)CHD vuông tại H 

=> \(CD^2=DH^2+CH^2\) ( định lí pi-ta-go) (2)

\(\Delta\)AHC vuông tại H 

=> \(AC^2=AH^2+HC^2\)

\(\Delta\)BHD vuông tại H 

=> \(BD^2=BH^2+DH^2\)

Từ (1) ; (2) 

=> \(AB^2+CD^2=AH^2+HB^2+DH^2+CH^2\)

\(=\left(AH^2+CH^2\right)+\left(HB^2+DH^2\right)=AC^2+BD^2\)

Vậy \(AB^2+CD^2=AC^2+BD^2\)