K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB....
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp

14 tháng 11 2017

Đường tròn c: Đường tròn qua C với tâm O Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng k: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [B, I] Đoạn thẳng t: Đoạn thẳng [H, J] Đoạn thẳng a: Đoạn thẳng [C, I] Đoạn thẳng f_1: Đoạn thẳng [H, K] Đoạn thẳng g_1: Đoạn thẳng [J, K] Đoạn thẳng h_1: Đoạn thẳng [A, I] Đoạn thẳng i_1: Đoạn thẳng [A, J] Đoạn thẳng j_1: Đoạn thẳng [A, K] Đoạn thẳng l_1: Đoạn thẳng [I, D] Đoạn thẳng m_1: Đoạn thẳng [H, D] Đoạn thẳng r_1: Đoạn thẳng [I, M] Đoạn thẳng s_1: Đoạn thẳng [N, I] Đoạn thẳng t_1: Đoạn thẳng [P, I] Đoạn thẳng a_1: Đoạn thẳng [P, K] O = (2.34, 3.06) O = (2.34, 3.06) O = (2.34, 3.06) C = (5.72, 3.08) C = (5.72, 3.08) C = (5.72, 3.08) Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm H: Giao điểm đường của j, g Điểm H: Giao điểm đường của j, g Điểm H: Giao điểm đường của j, g Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm J: Giao điểm đường của r, q Điểm J: Giao điểm đường của r, q Điểm J: Giao điểm đường của r, q Điểm K: Giao điểm đường của d, a Điểm K: Giao điểm đường của d, a Điểm K: Giao điểm đường của d, a Điểm D: Giao điểm đường của k_1, j_1 Điểm D: Giao điểm đường của k_1, j_1 Điểm D: Giao điểm đường của k_1, j_1 Điểm P: Giao điểm đường của n_1, g Điểm P: Giao điểm đường của n_1, g Điểm P: Giao điểm đường của n_1, g Điểm M: Giao điểm đường của p, h Điểm M: Giao điểm đường của p, h Điểm M: Giao điểm đường của p, h Điểm N: Giao điểm đường của q_1, g Điểm N: Giao điểm đường của q_1, g Điểm N: Giao điểm đường của q_1, g

Kéo dài BI cắt AK tại D. Ta chứng minh \(BD\perp AK\)

Từ I kẻ \(IM\perp AB;IN\perp BC\)

Ta có ngay \(\Delta BIM=\Delta BIN\) (Cạnh huyền góc nhọn)

\(\Rightarrow BM=BN\)

Kéo dài tia AK cắt BC tại P. 

Ta có \(\Delta AIM=\Delta PIN\left(g-c-g\right)\Rightarrow AM=PN\)

Vậy thì ta có AB = AM + MB = PN + NB = BP.

Suy ra tam giác ABP cân tại B.

Xét tam giác cân ABP có BD là phân giác đồng thời đường cao. Vậy  \(BD\perp AK\)

Ta thấy HJ và HK là phân giác hai góc kề bù nên chũng vuông góc.

Xét tứ giác JDKH có \(\widehat{JDK}+\widehat{JHK}=90^o+90^o=180^o\)

Vậy JDKH là tứ giác nội tiếp. Hay \(\widehat{JKH}=\widehat{JDH}\)

Xét tứ giác BHDA có \(\widehat{ADB}=\widehat{AHB}=90^o\) nên BHDA là tứ giác nội tiếp.

Suy ra \(\widehat{BDH}=\widehat{BAH}\)

Mà \(\widehat{BAH}=\widehat{BCA}\) (Cùng phụ với góc \(\widehat{ABC}\) )

Vậy nên \(\widehat{JKH}=\widehat{BCA}\)

Xét tam giác ABC và tam giác HJK có:

\(\widehat{BAC}=\widehat{JHK}=90^o\)

\(\widehat{BCA}=\widehat{JKH}\)

\(\Rightarrow\Delta ABC\sim\Delta HJK\left(g-g\right)\)

14 tháng 11 2017

Cô giải đúng rùi nhưng em chưa học tứ giác nội tiếp đường tròn

Nhưng dù sao cũng cảm ơn cô