Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Nối M với C}\)
\(\text{Xét :}\)\(\Delta MCH\perp H\text{ có}:\)
\(CH^2+MH^2=MC^2\left(Đlpytago\right)\)
\(\Rightarrow CH^2=MC^2-MH^2\)
\(\Rightarrow CH^2-BH^2=MC^2-MH^2-BH^2\)
\(\Rightarrow CH^2-BH^2=MC^2-\left(MH^2+BH^2\right)\)
\(\Rightarrow CH^2-BH^2=MC^2-MB^2\left(\Delta MHB\perp\text{tại H,MB^2}=MH^2+BH^2\left(pytago\right)\right)\)
\(\Rightarrow CH^2-BH^2=AC^2\)\(\left(\Delta AMC\perp\text{tại A},MC^2-MA^2=AC^2\left(PYTAGO\right)\right)\)
Từ A hạ AK ⊥BC( AK∈ BC)
{AK⊥BCMN⊥BC{AK⊥BCMN⊥BC
⇒AK//MN
=>NBKNNBKN=MBMAMBMA=1
=>KN=NB
Xét Δ vuông CAK và Δ ABC
AKCˆAKC^=CABˆCAB^=90o
AKCˆAKC^=ACBˆACB^
=> Δ CKA đồng dạng với Δ CAB
=>CACBCACB=CKCACKCA⇔CA2=CB.CK
=>CA2= (CN+NB)(CN-NB)
=CN2-NB2(đpcm)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(gt)
\(\widehat{AEM}=90^0\)(gt)
\(\widehat{AFM}=90^0\)(gt)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(cùng vuông góc với AC)
Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
F là trung điểm của AC(cmt)
Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà AE=MF(AFME là hình chữ nhật)
nên \(AE=\dfrac{AB}{2}\)
mà A,E,B thẳng hàng(gt)
nên E là trung điểm của AB
Ta có: F là trung điểm của NM(gt)
nên \(MN=2\cdot MF\)(1)
Ta có: E là trung điểm của AB(cmt)
nên AB=2AE(2)
Ta có: AEMF là hình chữ nhật(cmt)
nên MF=AE(Hai cạnh đối)(3)
Từ (1), (2) và (3) suy ra MN=AB
Xét tứ giác ABMN có
MN//AB(cùng vuông góc với AC)
MN=AB(cmt)
Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)