Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Giả thiết: AD= 1/2DC, lại có DE=EC (E trung điểm DC) nên AD=DE=EC;Xét tam giác BDC có:
M trung điểm BC (gt)
E trung điểm DC (gt)
Suy ra: EM là đường trung bình tam giác BDC
=>ME // BD hay ME // ID (I thuộc BD)
Xét tam giác AME có:
D trung điểm AE (cmt DA=DE);
ME // ID (cmt)
Suy ra: I là trung điểm AM => IA=IM (dpcm)
b)Xét tam giác BDC có
M là trung điểm của BC(gt);
N là trung điểm AD(gt)
Suy ra NM là đường trung bình tam giác BDC nên NM//DC hay MN//AE
=>MNAE là hình thang
A B C D M I E
Kẻ ME//BD cắt AC tại E.
Xét \(\Delta\)BCD có M là trung điểm của BC;ME//BD nên E là trung điểm của DC hay DE=DC hay AD=DE.
Xét \(\Delta\)AME có D là trung điểm của AE;ID//ME nên I là trung điểm của AM hay AI=IM.(đpcm)
Hình bạn tự vẽ nhé
Giải: Kẻ \(MG//BD\) ta có: \(\hept{\begin{cases}MG//BD\\MB=MC\left(gt\right)\end{cases}}\Rightarrow\) MG là đường trung bình tam giác BCD.
\(\Rightarrow DG=CG=\frac{1}{2}CD\Rightarrow DG=AD\)
Xét tam giác AMG ta có: \(\hept{\begin{cases}MG//DI\\AD=DG\end{cases}}\Rightarrow AI=IM\left(đpcm\right)\) (tc đường tb tam giác)
a: Ta có: AD=DE=EC
=>D là trung điểm của AE và E là trung điểm của DC
Xét ΔBDC có
M,E lần lượt là trung điểm của CB,CD
=>ME là đường trung bình của ΔBDC
=>ME//BD
b: Ta có: ME//BD
I\(\in\)BD
Do đó: ID//ME
Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
=>AI=IM
Hình tự vẽ.
a)C/m : CD=DE ; BM=MC;=> ME là đường trung bình của tam giác BDC.
=> BD // ME.
hay ID // ME mà AD=DE;=> ID là đường trung bình của tam giác AME.
=> I là trung điểm của AM.
b) Vì ID là đường trung bình của tam giác AME.
=> ID = 1/2 ME.(1)
Mà ME là đường trung bình của tam giác BDC.
=> ME=1/2 BD.(2)
Từ (1) và (2), suy ra:
ID=BD/4.
Lấy N là trung điểm của DC ; ta có \(AD=DN=NC\)
Xét tam giác BCD có MN là đường trung bình \(\Rightarrow MN\text{//}BD\) hay \(MN\text{//}ID\)
Xét tam giác AMN có D là trung điểm của AN; ID//MN (cmt) => I là trung điểm của AM
=> ĐPCM
a: Xét ΔBDC có
M,E lần lượt là trung điểm của CB,CD
=>ME là đường trung bình của ΔBDC
=>ME//BD và \(ME=\dfrac{1}{2}BD\)
b: Ta có: ME//BD
I\(\in\)BD
Do đó: ID//ME
Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
=>AI=IM
Các bn vẽ hình giúp mik với