Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D I K E F N
Gọi N là trung điểm của AM. Nối N với I & K.
Thấy ngay IN là đường trung bình của \(\Delta\)AMB => IN // AB hay IN // AE
Trong \(\Delta\)DAE: I thuộc DE; N thuộc AD; IN // AE => \(\frac{DI}{IE}=\frac{DN}{NA}\)(ĐL Thales) (1)
Tương tự với \(\Delta\)ADF: KN // AF => \(\frac{DK}{KF}=\frac{DN}{NA}\)(2)
Từ (1) và (2) => \(\frac{DI}{IE}=\frac{DK}{KF}\). Xét \(\Delta\)EDF: \(\frac{DI}{IE}=\frac{DK}{KF}\)
=> IK // EF (ĐL Thales đảo) (đpcm).
thì gọi D là trung điểm của BC và M thuộc AD rồi tự tính -> ik song song ef
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD