K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC đều

=>AB=AC=BC và \(\widehat{BAC}=\widehat{ABC}=\widehat{ACB}=60^0\)

Xét ΔABN và ΔBCP có

AB=BC

\(\widehat{ABN}=\widehat{BCP}\)

BN=CP

Do đó: ΔABN=ΔBCP

=>AN=BP

Xét ΔMAC và ΔPCB có

MA=PC

\(\widehat{MAC}=\widehat{PCB}\left(=60^0\right)\)

AC=CB

Do đó: ΔMAC=ΔPCB

=>MC=BP

=>AN=BP=MC

b: Ta có: AM+BM=AB

CP+PA=CA

BN+NC=BC

mà AM=CP=BN và AB=CA=BC

nên BM=PA=NC

Xét ΔMAP và ΔNBM có

AP=BM

\(\widehat{MAP}=\widehat{NBM}\)

AM=BN

Do đó: ΔMAP=ΔNBM

=>MP=NM

Xét ΔNCP và ΔPAM có

NC=PA

\(\widehat{NCP}=\widehat{PAM}\)

CP=AM

Do đó: ΔNCP=ΔPAM

=>NP=PM

=>MP=NM=NP

=>ΔMNP đều

a) Vì O lầ điểm cách đều 3 cạnh của \(\Delta ABC\) nên:
+) \(OD=OE=OF\)

+) \(AO\)\(BO\) và \(CO\) là 3 đường phân giác của \(\Delta ABC\)

Xét \(\Delta BFO\) và \(\Delta BDO\) có:

\(\widehat{BFO}\)=\(\widehat{BDO}\)=90o

\(BO\) chung

\(OF=OD\) (CMT)

\(\Rightarrow\Delta BFO=\Delta BDO\) (ch-cgv)

\(\Rightarrow BF=BD\)

\(\Rightarrow\Delta BFD\) cân tại \(B\)

\(\Rightarrow\widehat{BFD}\)=\(\widehat{BDF}\)= ( \(180^o\)\(\widehat{FBD}\)) : 2 \(\left(1\right)\)

Vì \(BA=BM\) (gt) nên \(\Delta BAM\) cân tại \(B\)

\(\Rightarrow\widehat{BAM}\)=\(\widehat{BMA}\)= (\(180^o\)-\(\widehat{ABM}\)) : 2 \(\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\widehat{BFD}\)=\(\widehat{BAM}\) mà chúng ở vị trí đồng vị nên \(DF\)//\(AM\)

\(\Rightarrow\) Tứ giác \(AFDM\) là hình thang \(\left(3\right)\)

Từ \(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) \(AFDM\) là hình thang cân

                     \(\Rightarrow\) \(MF=AD\) \(\left(4\right)\)

CM tương tự ta được: \(AEDN\) là hình thang cân

                               \(\Rightarrow\) \(NE=AD\) \(\left(5\right)\)

Từ \(\left(4\right)\) và \(\left(5\right)\) \(\Rightarrow MF=NE\)

b) Xét \(\Delta ODM\) và \(\Delta OFA\) có:

\(OD=OF\) (CMT)

\(\widehat{ODM}\)=\(\widehat{OFA}\)=\(90^o\)

\(OM=FA\) (\(AFDM\) là hình thang cân)

\(\Rightarrow\Delta ODM=\Delta OFA\) (c.g.c)

\(\Rightarrow OM=OA\left(6\right)\)

CM tương tự ta được \(\Delta ODN=\Delta OEA\) (c.g.c)

                             \(\Rightarrow\)\(ON=OA\) \(\left(7\right)\)

Từ \(\left(6\right)\) và \(\left(7\right)\) \(\Rightarrow OM=ON\)

                        \(\Rightarrow\) \(\Delta MON\) cân tại \(O\)

​​Mình biết bài này là từ 2019 rồi nhưng mà đề này mình thấy chưa ai làm nên mình làm để có bạn nào tìm thì sẽ có để tham khảo.

 
23 tháng 7 2022

vâng baayh là 2022 r nhưng e vẫn tìm câu trl của tiền bối ạ :33

15 tháng 8 2017

1,Cho tam giác ABC gọi G là trọng tâm.Đường thẳng d không cắt tam giác ABC.Gọi A',B',C',G' lần lượt là hình chiếu của A,B,C,G trên đường thẳng d.Chứng minh rằng GG'=(AA'+BB'+CC')/3 

bạn dúp mình giải đc ko

21 tháng 8 2017

Bài của bạn là toán lớp mấy vậy

1 tháng 8 2021

a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.

29 tháng 3 2016

k mình mình sẽ trả lòi

29 tháng 3 2016

là sao hả bạn

4 tháng 12 2017

Mọi người gắng giúp mik nha!!!

Mik đang gấp lắm lắm lắm!

26 tháng 2 2018

Câu hỏi của Hoa Thân - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.