K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

19 tháng 11 2019

Xét hai \(\Delta ABC\)và \(ADE\)có:

\(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\)(vì hai góc đối đỉnh)

\(AC=AE\left(gt\right)\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(c-g-c\right)\)

b) \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{AED}\)(hai góc tương ứng)

Mà hai góc này là vị trí so le nên 

\(DE\)// \(BC\)

đpcm.

c) đang nghĩ 

19 tháng 11 2019

a ) Xét \(\Delta\)ABC và \(\Delta\)ADE có :

  • AB = AD ( giả thiết )
  • AC = AE ( giả thiết )
  • BÂC = DÂE ( đối đỉnh )

\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADE ( c - g - c ) ( đpcm )

b )Ta có : \(\Delta\)ABC = \(\Delta\)ADE ( cm câu a )

 \(\Rightarrow\)DÊA = Góc ACB ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)ED // BC ( đpcm )

c ) #Theo mình câu c là M là trung điểm BE và N là trung điểm DC nhé#

Xét \(\Delta\)BEC có :

  • M là trung điểm BE
  • A là trung điểm CE

\(\Rightarrow\)AM là đường trung bình của \(\Delta\)BEC

\(\Rightarrow\)AM // BC ( 1 )

Xét \(\Delta\)BDC có :

  • A là trung điểm BD
  • N là trung điểm DC

\(\Rightarrow\)AN là đường trung bình của \(\Delta\)BDC

\(\Rightarrow\)AN // BC ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)M , A , N thẳng hàng ( Theo tiên đề Ơ - clit )

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

26 tháng 12 2024

Lời giải chi tiết bài toán:

Đề bài:

Cho tam giác ABCABC vuông tại AA, có AB=aAB = a. Gọi M,N,DM, N, D lần lượt là trung điểm của AB,BC,ACAB, BC, AC.

  1. Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài của NDND theo aa.
  2. Chứng minh tứ giác ADNMADNM là hình chữ nhật.
  3. Gọi QQ là điểm đối xứng của NN qua MM. Chứng minh AQBNAQBN là hình thoi.
  4. Trên tia đối của tia DBDB lấy điểm KK sao cho DK=DBDK = DB. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng.
Bài giải: 1. Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài NDND:
  • NN là trung điểm của BCBCDD là trung điểm của ACAC, theo định nghĩa đường trung bình:
    NDND song song với ABABND=12ABND = \frac{1}{2}AB.

  • Do AB=aAB = a, suy ra ND=12aND = \frac{1}{2}a.

Kết luận: NDND là đường trung bình của tam giác ABCABC, và ND=12aND = \frac{1}{2}a.

2. Chứng minh tứ giác ADNMADNM là hình chữ nhật:
  • MM là trung điểm của ABAB, nên AM=MB=12AB=12aAM = MB = \frac{1}{2}AB = \frac{1}{2}a.

  • ND∥ABND \parallel ABND=12ABND = \frac{1}{2}AB (tính chất đường trung bình).

  • AM⊥ABAM \perp AB (tam giác vuông tại AA), nên AM⊥NDAM \perp ND.

  • Tứ giác ADNMADNM có:

    • AD∥MNAD \parallel MN (vì cùng vuông góc với ABAB).
    • AM⊥NDAM \perp ND.

Do đó, ADNMADNM là hình chữ nhật.

3. Chứng minh AQBNAQBN là hình thoi:
  • QQ là điểm đối xứng của NN qua MM, nên MQ=MNMQ = MN.

  • MM là trung điểm của ABAB, suy ra AQ=BN=AB=aAQ = BN = AB = a.

  • Trong hình chữ nhật ADNMADNM:

    • AM=ND=12aAM = ND = \frac{1}{2}a, và MM là trung điểm của ABAB.
  • Tứ giác AQBNAQBN có:

    • AQ=BNAQ = BN.
    • AB=QN=aAB = QN = a.

Vậy AQBNAQBN là hình thoi.

4. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng:
  • Trên tia đối của tia DBDB, lấy điểm KK sao cho DK=DBDK = DB.

  • QQ đối xứng với NN qua MM, nên MQ=MNMQ = MN.

  • Trong tam giác vuông ABCABC, DDMM lần lượt là trung điểm của ACACABAB:

    • DB=AC2+AB22=a2+AC22DB = \frac{\sqrt{AC^2 + AB^2}}{2} = \frac{\sqrt{a^2 + AC^2}}{2}.
    • DK=DBDK = DB, nên KK nằm trên đường thẳng qua DD kéo dài.
  • AQBNAQBN là hình thoi, nên AQAQ song song với DBDB. Kết hợp với vị trí của KK, suy ra Q,A,KQ, A, K thẳng hàng.

Kết luận:
  1. NDND là đường trung bình của tam giác ABCABC, ND=12aND = \frac{1}{2}a.
  2. ADNMADNM là hình chữ nhật.
  3. AQBNAQBN là hình thoi.
  4. Ba điểm Q,A,KQ, A, K thẳng hàng.
24 tháng 3 2016

Bạn thi gì mà sớm thế

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BECb) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?c) CM: Tứ giác ABEF là hình thang când) Điểm C có là trực tâm của tam...
Đọc tiếp

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY

  • 1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA

a) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC

b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?

c) CM: Tứ giác ABEF là hình thang cân

d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?

  • 2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC. 

a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau

d) Tính diện tích tam giác ADE theo diện tích tam giác ABC

  • 3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.

a) CM: Tứ giác ABDC là hình thoi

b) CM: Tứ giác AMCE là hình chữ nhật

c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE

d) CM: AK,CI,EM đồng quy

  • 4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.

a) CMR: BM song song với DN

b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.

  • 5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.

a) CM : Tứ giác ABDC là hình thoi

b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành

c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật

d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF

  • 6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.

a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành

b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK

c) CM: ba điểm E,H,K thẳng hàng

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

a: Xét ΔABC có 

F là trung điểm của AB

E là trung điểm của AC

Do đó: FE là đường trung bình của ΔBAC

Suy ra: \(FE=\dfrac{BC}{2}\) và FE//BC

b: Xét tứ giác FEDB có 

FE//BD

FB//DE

Do đó: FEDB là hình bình hành

Suy ra: FE=BD

mà \(FE=\dfrac{BC}{2}\)

nên \(BD=\dfrac{BC}{2}\)

\(\Leftrightarrow BD=CD=\dfrac{BC}{2}\)

c: Hình thang FECB có 

K là trung điểm của FB

I là trung điểm của EC

Do đó: KI là đường trung bình của hình thang FECB

Suy ra: KI//FE//BC và \(KI=\dfrac{1}{2}\left(FE+BC\right)\)

\(\Leftrightarrow KI=\dfrac{1}{2}\left(\dfrac{1}{2}BC+BC\right)\)

\(\Leftrightarrow KI=\dfrac{1}{2}\left(\dfrac{3}{2}BC\right)\)

\(\Leftrightarrow KI=\dfrac{3}{4}BC\)

13 tháng 8 2021

giúp mk nha mn, mk đag cần gấp