Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,
ghghhggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Gọi E là hình chiếu của A trên BC
F là hình chiếu của B trên AC
K là giao điểm của AE với MN
L là giao điểm của OM với AB
CM được MN//AB do có 2 trung điểm
Ta có AE vuông góc với BC và OM vuông góc với BC suy ra AE//OM
tương tự ON//BF
tứ giác AKML có AL//KM(MN//AB),AK//LM(AE//OM)
suy ra AKML là HBH suy ra LMK=LAK hay OMN=HAB
tương tự được ONM=HBA
suy ra tam giác OMN đồng dạng với tam giác HAB (g.g)
suy ra OM/AH=MN/AB
Mà MN/AB=1/2 do MN là đường trung bình của tam giác ABC
OM/AH=1/2
AH=2OM
ta có G là trọng tâm của tam giác ABC và AM là đường trung tuyến
suy ra GM/GA=/1/2
OM//AE suy ra OMG=HAG
xét tam giác OMG và tam giác HAG có
GM/GA=OM/AH=1/2
OMG=HAG
suy ra tam giác OMG đồng dạng với tam giác HAG (c.g.c)
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng