K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, 

Ta có ON // BH ( cùng vuông góc với AC )

OM // AH ( cùng vuông góc với BC )

MN // AB ( MN là đường trung bình của tam giác ABC )

Vậy tam giác OMN đồng dạng với tam giác HAB.

b,

Xét tam giác AHG và MOG có :

\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )

\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )

Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)

Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)

\(\Rightarrow H,G,O\)thẳng hàng

19 tháng 4 2021

Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,

24 tháng 8 2021

ghghhggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

15 tháng 8 2020

a) Vì E, D lần lượt là trung điểm của AB, AC (đề bài)

=> ED là đường trung bình của tam giác ABC (định nghĩa đường trung bình của tam giác)

=> ED // BC; ED = ½ BC(tính chất đường trung bình của tam giác) 

Vì O là giao điểm của 3 đường trung trực trong tam giác ABC (đề bài); E, D lần lượt là trung điểm của AB, AC (đề bài)  

=> OD vuông góc với AC; OE vuông góc với AB

Vì H là trực tâm của tam giác ABC (đề bài) => BH vuông góc với AC; CH vuông góc với AB

Mà OD vuông góc với AC; OE vuông góc với AB (cmt)

=> BH // OD; CH // OE (từ vuông góc đến // )

Vì BH // OD; ED // BC (Cmt) => Góc ODE = góc HBC  

Vì CH // OE, ED // BC (cmt) => góc ODE = góc HCB

Xét tam giác OED và tam giác HCB có: 

+)góc ODE = góc HCB

+) Góc ODE = góc HBC 

=> Tam giác OED ~ tam giác HCB (g.g)(đpcm)

=>  OE/CH = OD/BH = ED/BC = ½ 

b) Ta có G là trọng tâm của tam giác ABC (đề bài)

=> GD = ½ BG (Tính chất trọng tâm của tam giác)

Ta có BH // OD (Cmt) => Góc BHG = góc GOD (2 góc slt)

Xét tam giác GOD và tam giác GHB có: 

+) GD = ½ BG

+) Góc GOD = góc BGH(cmt)

+) OD/BH = ½

=> Tam giác GOD ~ tam giác GHB 

=> Góc OGD = góc HGB; OG/HG = OD/BH =  ½  (tính chất 2 tam giác đồng dạng)

c) Ta có góc OGD = góc HGB (cmt); B, G, D thẳng hàng 

=> H, G, O thẳng hàng vì H và O nằm ở 2 mặt phẳng khác nhau, bờ là BD

Ta có OG/HG = ½ (cmt) => GH = 2OG

Good luck!

a: OM//AH

ON//BH

MN//AB

=>góc BAH=góc OMN và góc ABH=góc ONM

=>ΔABH đồng dạng vơi ΔMNO

b: G là trọng tâm của ΔABC

=>GM/GA=1/2

ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2

=>OM/AH=MG/AG

=>ΔHAG đồng dạng với ΔOMG

c: ΔHAG đồng dạng với ΔOMG

=>góc AGH=góc OGM

=>H,G,O thẳng hàng

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)