\(\widehat{B}=\widehat{C=40}^o\) Gọi Ax là tia phân giác của góc ngoà...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

A B C 1 2 3 P/s : Hình ảnh chỉ có tính chất minh họa cho sản phẩm x

Theo đề ta giải được : \(\widehat{A}=100^0\)

Gọi à là tia phân giác ngoài của góc A .

\(\Rightarrow\widehat{A_2}=\widehat{A_3}=\frac{\left(180^0-100^0\right)}{2}=\frac{80^0}{2}=40^0\)

\(\Rightarrow\widehat{A_2}=\widehat{C}\left(=40^0\right)\)

Mà góc A 1 và góc C là hai góc so le trong .

=> Ax // BC ( đpcm )

2 tháng 11 2016

thanks bạn nhiều lắmoaoa

20 tháng 4 2017

Giải

ˆCADCAD^= ˆBB^+ ˆCC^(góc ngoài của tam giác ABC)

= 400+ 400 = 800

ˆA2=12ˆCAD=802=A2^=12CAD^=802=400.

Hai góc so le trong bằng nhau nên Ax// Bc

4 tháng 11 2019

a/ tam giác BAH và tam giác CAH có 

AB=AC ( tam giác ABC cân vì góc B = góc C)

góc BHA = góc CHA = 90 độ

góc B = góc C

=> tam giác BAH = tam giác CAH (CH - GN)

=>góc BAH = góc HAC

18 tháng 11 2017

A B C x D M

a, Xét t/g BAM và t/g CAM có:

AB = AC (gt)

MB = MC (gt)

AM : cạnh chung 

Do đó t/g BAM = t/g CAM (c.c.c)

b, Vì AB = AC (gt) => t/g ABC cân tại A => góc B = góc C

c, Ta có: góc xAD + góc CAD = góc B + góc C

Mà góc xAD = góc CAD ; góc B = góc C

=> \(2\widehat{CAD}=2\widehat{C}\)

=> góc CAD = góc C

Mà 2 góc này ở vị trí so le trong

=> AD // BC

18 tháng 11 2017

a,Vì tam giác ABC có AB=AC

=>tam giác ABC cân tại A.

M là trung điểm BC=>BM=MC

Có AM là cạnh chung.

=>tam giác BAM=CAM

b,Do tam giác ABC cân tại A

=>^B=^C

30 tháng 7 2017

sao lại cs cả AD hả bn

19 tháng 8 2020

A B C E F x y M I K

a) Gọi I là trung điểm của AB,

K là trung điểm của AC.

Ta có:

 \(IA=IE=MK=\frac{1}{2}AB\)

\(KF=KA=IM=\frac{1}{2}AC\)

TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K

\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)

\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)

MI//AC

=> BIM=BAC ( đồng vị) (1)

M//AB

=> MKC=BAC (đồng vị)(2)

từ (1) và (2)

\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)

TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF

=> \(\Delta EIM\)\(\Delta MKF\)

=> ME = MF

=> TAM GIÁC MEF cân tại M