Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì I là trung điểm AC và MN nên AMCN là hbh
b, Vì M,I là trung điểm BC,AC nên MI là đtb tg BAC \(\Rightarrow MI=\dfrac{1}{2}AB\)
Vì I là trung điểm MN nên \(MI=\dfrac{1}{2}MN\)
Do đó \(MN=AB\)
c, Áp dụng định lí Menelaus cho tam giác ABM và cát tuyến DOC
\(\dfrac{DA}{DB}\cdot\dfrac{CB}{CM}\cdot\dfrac{OM}{OA}=1\\ \Rightarrow\dfrac{DA}{DB}\cdot2\cdot1=1\\ \Rightarrow\dfrac{DA}{DB}=\dfrac{1}{2}\)
Do đó \(DB=2AD\)
a: Xét tứ giác AMCN có
D là trung điểm chung của AC và MN
=>AMCN là hình bình hành
b:AMCN là hình bình hành
=>AN//CM và AN=CM
AN=CM
MB=MC
Do đó: AN=MB
AN//CM
\(M\in BC\)
Do đó: AN//MB
Xét tứ giác ABMN có
AN//MB
AN=MB
Do đó: ABMN là hình bình hành
=>AM cắt BN tại trung điểm của mỗi đường
mà I là trung điểm của AC
nên I là trung điểm của BN
=>B,I,N thẳng hàng
A B C M E A K I O N D J
a) Do O là trọng tâm giác tam giác ABC nên \(OE=\frac{1}{2}OC\)
Lại có \(OE=\frac{1}{2}OK\) (Do EK = EO)
Vậy nên OC = OK.
Tương tự OI = OB. Vậy tứ giác BKIC là hình bình hành.
Lại có do tam giác ABC cân tại A nên AO là đường trung trực của BC. Vậy thì OB = OC hay ta suy ra BI = CK
Hình bình hành BKIC có hai đường chéo bằng nhau nên nó là hình chữ nhật.
b) Xét tứ giác BKAO có EK = EO, EA = EB nên BKAO là hình bình hành.
Do BKIC là hình chữ nhật nên OB = OI
Vậy nên AK song song và bằng OI hay AIOK là hình bình hành.
Ta cũng có OK = OI nên AIOK là hình thoi.
c) Gọi J là trung điểm của NC.
Xét tam giác BNC có M là trung điểm BC, J là trung điểm NC nên MJ là đường trung bình hay MJ // BN.
Xét tam giác MNC có MD = ND; NJ = JC nên DJ là đường trung bình hay DJ // MC.
Do \(MC\perp OM\Rightarrow JD\perp OM\)
Xét tam giác OMJ có \(JD\perp OM;MN\perp OJ\) nên D là trực tâm tam giác.
Suy ra \(OD\perp MJ\)
Mà MJ // NB nên \(NB\perp OD.\)
a: Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
Xét tứ giác AMCN có
I là trung điểm chung của AC và MN
=>AMCN là hình bình hành
Hình bình hành AMCN có \(\widehat{AMC}=90^0\)
nên AMCN là hình chữ nhật
b: ta có: AMCN là hình chữ nhật
=>AN//CM và AN=CM
Ta có: AN//CM
M\(\in\)BC
Do đó: AN//MB
Ta có: AN=CM
BM=CM
Do đó: AN=MB
Xét tứ giác ABMN có
AN//MB
AN=MB
Do đó: ABMN là hình bình hành
=>AM cắt BN tại trung điểm của mỗi đường
mà E là trung điểm của AM
nên E là trung điểm của BN