K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

a, Vì I là trung điểm AC và MN nên AMCN là hbh

b, Vì M,I là trung điểm BC,AC nên MI là đtb tg BAC \(\Rightarrow MI=\dfrac{1}{2}AB\)

Vì I là trung điểm MN nên \(MI=\dfrac{1}{2}MN\)

Do đó \(MN=AB\)

c, Áp dụng định lí Menelaus cho tam giác ABM và cát tuyến DOC

\(\dfrac{DA}{DB}\cdot\dfrac{CB}{CM}\cdot\dfrac{OM}{OA}=1\\ \Rightarrow\dfrac{DA}{DB}\cdot2\cdot1=1\\ \Rightarrow\dfrac{DA}{DB}=\dfrac{1}{2}\)

Do đó \(DB=2AD\)

Giúp với ạ mai mik nộp r ạBài 1: Cho tam giác ABC có M là trung điểm của BC và I là trung điểm của AC. Gọi N là điểm đối xứng với M qua I.      a)C/m tứ giác AMCN là hình bình hành.               b) C/m   AB = MN.c)Gọi O là trung điểm của AM và D là giao điểm của CO và AB. Chứng minh rằng DB = 2AD.Bài 4:  Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF =...
Đọc tiếp

Giúp với ạ mai mik nộp r ạ

Bài 1: Cho tam giác ABC có M là trung điểm của BC và I là trung điểm của AC. Gọi N là điểm đối xứng với M qua I.

      a)C/m tứ giác AMCN là hình bình hành.         

      b) C/m   AB = MN.

c)Gọi O là trung điểm của AM và D là giao điểm của CO và AB. Chứng minh rằng DB = 2AD.

Bài 4:  Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF = FC.

a)     Tứ giác BEDF là hình gì? Vì sao?

b)     Tia DF cắt BC tại M. Chứng minh: DF = 2FM.

c)     Tia BE cắt AD tại N, hai đường chéo AC và BD cắt nhau tại O. Chứng minh: M đối xứng với N qua điểm O.

Bài 5: Cho hình thang cân ABCD (AB//CD, CD =2AB) .Gọi M là trung điểm của DC.

  a)Tứ giác ABCM là hình gì ?Vì sao?

  b) Từ  D và C kẻ đường thẳng vuông góc với DC cắt AD và BC lần lượt tại H và I. Chứng minh tứ giác IHCD là hình chữ nhật

  c)Gọi K là giao điểm của DH và CI ,Kẻ KN⊥ IH. Chứng minh 3 điểm N, K, M thẳng hàng.

Bài 6: Cho hình bình hành ABCD. Gọi I, K lần lượt là trung điểm của CD, AB. Đường chéo BD cắt CK và CA lần lượt ở M và O.

  a) Chứng minh tứ giác AKCI là hình bình hành.

  b) Chứng minh ba điểm K, O, I thẳng hàng.

  c) Chứng minh AI = 3. KM.

d) Đường thẳng AM cắt BC tại E . Tính tỉ số \(\dfrac{EI}{BD}\) .

1
30 tháng 10 2021

Bài 1: 

a: Xét tứ giác AMCN có 

I là trung điểm của AC

I là trung điểm của MN

Do đó: AMCN là hình bình hành

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: ABCDlà hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AMCN là hình bình hành

nên AC cắt MN tại trung điểm của mỗi đường

=>M đối xứng N qua O