K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Hỏi đáp Toán

*) Do \(MG\perp AB;BC\perp AB\Rightarrow GM\)//\(BC\).

Ta có: \(GM\)//\(BC\)\(HM=MC\Rightarrow GH=GB\)

Trong \(\Delta HBC\) có: \(HG=GB;HM=MC\Rightarrow GM\) là đường trung bình của \(\Delta HBC\)

\(\Rightarrow GM=\dfrac{1}{2}BC\).

Ta có: \(GM=\dfrac{1}{2}BC;AD=\dfrac{1}{2}BC\Rightarrow GM=AD\)\(AD\)//\(GM\)(do cùng song song với \(BC\))

\(\Rightarrow\) tứ giác ADMG là hình bình hành.

b)

Do tứ giác ADMG là hình bình hành => AG//DM\(\Rightarrow\widehat{GAM}=\widehat{DMA}\)\(\widehat{DAM}=\widehat{GMA}\)

\(\Rightarrow\Delta GAM\)~\(\Delta DMA\left(g.g\right)\)

c)

Do tứ giác ADMG là hình bình hành \(\Rightarrow\widehat{A_1}=\widehat{M_1}\).

Ta lại có: \(\widehat{A_2}=\widehat{M_2}\)(do cùng phụ với góc \(B_1\))

\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{M_1}+\widehat{M_2}=90^o\) ( Do \(AD\)//\(BC\)\(BC\perp AB\)\(\Rightarrow AD\perp AB\))

Vậy \(PM\perp BM\)

27 tháng 5 2017

Mình nhầm chữ D và P nhé

15 tháng 12 2015

Em mới học lớp 6 thui ah. Xin lỗi vì không giúp được nha!

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0
17 tháng 7 2016

a) Do BC là phân giác của góc ABD và góc ACD nên góc ABC=góc CBD (1)

                                                                                 và góc ACB=góc BCD (2)

2 tam giác ABC và tam giác DBC có chung cạnh BC(3)

Từ (1);(2);(3) suy ra tam giác ABC=tam giác DBC (g.c.g)

suy ra : AB=DB;AC=DC( các góc tương ứng)

b) Ta có : BE là phân giác ( do E nằm trên cạnh BC )

Mà trong tam giác ABD có AB=DB

Nên tam giác ABD cân tại B

trong tam giác cân đường phân giác cũng là đường trung tuyến, đường cao,...

nên BE là trung tuyến 

suy ra E là trung điểm của AD; AE=DE( đpcm )   

          ED;EC là đường cao nên góc AEB=góc BED=góc DEC=góc CEA=90o

vậy BE;CE là pz của góc AED

              học tốt nha

 

17 tháng 7 2016

cảm ơn bn nhìu

7 tháng 11 2015

BẠN TỰ VẼ HÌNH NHÉ MÌNH GIẢI THÔI NHA ^^
 

                      Giải
a) Xét tam giác ODE, có:
    IK là đường trung bình(I t/điểm OD và K trung điểm OE)
    =>IK // DE
    Vậy:IKED là hình thang

b) Ta có IAKO là hcn (A=AIO=AKO=90 độ)
    =>AK=IO và AK // IO. 
    Mà D,I,O thẳng hàng và DI=IO (D đxứng O qua I)
    =>AK//DI và AK=DI
    =>AKDI là hbh.
c)Ta có tam giác ABC có góc A=90 độ và Góc C=30 độ
   =>góc B=60 độ
   Và tam giác ABC vuông ở A và AM là đường trung tuyến
   => AM =1/2 BC  =>AM=BM
   =>Tam giác ABM cân ở M. Và Góc B= 60độ (cmt) 
   => Tam giác ABM đều => AB=AM=BM
   Vậy chu vi tam giác ABC= 3 x 7=21 (cm)


 

Bài 1:

Hình vẽ :

: A 1 2 3 B H O G D F C E

a,Theo gt \(AC>AB->\widehat{B}>\widehat{C}\)

\(\Delta AHB\perp tại.H\)

\(=>\widehat{ABH}+\widehat{BAH}=90^0\)

\(\Delta ABC\perp tại.A=>\widehat{BAH}+\widehat{HAC}=90^0\)

\(\Delta AHC\perp tại.H=>\widehat{ACH}+\widehat{HAC}=90^0\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

AHDE là hình vuông (gt) \(=>AE\)//\(BC=>\widehat{CAE}=\widehat{ACB}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{CAE}=\widehat{BAH}\left(=\widehat{ACB}\right)\)

\(\Rightarrow\widehat{HAD}+\widehat{DAC}=\widehat{HAC}.hay.\widehat{HAD}< \widehat{HAC}\)

\(\Rightarrow\) D nằm trong đoạn HC .

b,

Tứ giác ABGF có :\(\)

BG//AF

FG//AB

\(=>ABGF\) là hình bình hành

Mà \(\widehat{BAF}=90^0\)

\(=>ABGF.là.HCN\)

Xét \(\Delta AHB;\Delta AEF.có:\)

\(\widehat{BAH}=\widehat{FAE}\left(cmt.\widehat{A_1}=\widehat{A_2}\right)\)

\(AH=AE\left(cạnh.của.hình.vuông.AHDE\right)\)

\(\widehat{AHB}=\widehat{AEF}=90^0\)

\(=>\Delta AHB=\Delta AEF\left(g.c.g\right)\)

\(=>AB=AF\)

\(=>HCN.ABGF\) là hình vuông

c,

Hình vuông ABGF có hai đường chéo giao nhau tại O

\(=>DO\) là trung tuyến thuộc cạnh huyền BF của tam giác BDF vuông tại D .

\(=>DO=\dfrac{BF}{2}\)

Mà \(OB=OF=OA=OG\)

=> O nằm trên đường trung trực của đoạn thẳng AD . E và H cũng nằm trên đường trung trực của đoạn ấy .

\(=>AG,BF,HE\) đồng quy .

d,

\(\)Ta có : HE là đường trung trực của AD hay \(HE\perp AD\left(cmt\right)\left(a\right)\)

Lại có \(OD=OB=OA=OF=\dfrac{AG}{2}\left(cmt\right)\)

\(=>\Delta AGD\) có đường trung tuyến DO thuộc cạnh AG bằng nửa AC

\(=>\Delta ADG\perp tại.D\left(hay.GD\perp AD\right)\left(b\right)\)

Từ (a) và (b) ta có : HE//GD (cùng vuông góc với AD )

=> DEHG là hình thang (Đề sai câu này,nhìn hình thấy ngay )