Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do BC là phân giác của góc ABD và góc ACD nên góc ABC=góc CBD (1)
và góc ACB=góc BCD (2)
2 tam giác ABC và tam giác DBC có chung cạnh BC(3)
Từ (1);(2);(3) suy ra tam giác ABC=tam giác DBC (g.c.g)
suy ra : AB=DB;AC=DC( các góc tương ứng)
b) Ta có : BE là phân giác ( do E nằm trên cạnh BC )
Mà trong tam giác ABD có AB=DB
Nên tam giác ABD cân tại B
trong tam giác cân đường phân giác cũng là đường trung tuyến, đường cao,...
nên BE là trung tuyến
suy ra E là trung điểm của AD; AE=DE( đpcm )
ED;EC là đường cao nên góc AEB=góc BED=góc DEC=góc CEA=90o
vậy BE;CE là pz của góc AED
học tốt nha
*) Do \(MG\perp AB;BC\perp AB\Rightarrow GM\)//\(BC\).
Ta có: \(GM\)//\(BC\) và \(HM=MC\Rightarrow GH=GB\)
Trong \(\Delta HBC\) có: \(HG=GB;HM=MC\Rightarrow GM\) là đường trung bình của \(\Delta HBC\)
\(\Rightarrow GM=\dfrac{1}{2}BC\).
Ta có: \(GM=\dfrac{1}{2}BC;AD=\dfrac{1}{2}BC\Rightarrow GM=AD\) và \(AD\)//\(GM\)(do cùng song song với \(BC\))
\(\Rightarrow\) tứ giác ADMG là hình bình hành.
b)
Do tứ giác ADMG là hình bình hành => AG//DM\(\Rightarrow\widehat{GAM}=\widehat{DMA}\) và \(\widehat{DAM}=\widehat{GMA}\)
\(\Rightarrow\Delta GAM\)~\(\Delta DMA\left(g.g\right)\)
c)
Do tứ giác ADMG là hình bình hành \(\Rightarrow\widehat{A_1}=\widehat{M_1}\).
Ta lại có: \(\widehat{A_2}=\widehat{M_2}\)(do cùng phụ với góc \(B_1\))
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{M_1}+\widehat{M_2}=90^o\) ( Do \(AD\)//\(BC\) mà \(BC\perp AB\)\(\Rightarrow AD\perp AB\))
Vậy \(PM\perp BM\)