K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

theo định lí py-ta-go ta có :

                          BC2=AC2+AB2

\(\Rightarrow\)BC2=82+62  \(\Rightarrow\)BC=\(\sqrt{8^2}+6^2\)=50

29 tháng 1 2016

trong sách nâng cao và phát triển có lẽ có bài tương tự đấy bạn kiểm tra xem

29 tháng 1 2016

Nguyễn Doãn Bảo Xin lỗi! Mình không có sách đó.

Có bạn nài làm đc ko v

9 tháng 2 2018

Áp dụng định ly Pitago trong các tam giác vuông ACK;AKI;BKI ta có :

AC^2 = AK^2-CK^2

AK^2 = AI^2+IK^2

IK^2 = BK^2-IB^2

=> AC^2 = AI^2+IK^2-CK^2 = AI^2+BK^2-IB^2-CK^2 = AI^2-IB^2 ( vì BK=CK => BK^2 = CK^2 )

=> ĐPCM

Tk mk nha

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).

1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

nên \(BC\cdot AH=AB\cdot AC\)

2: 

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=CH\cdot BC\)