Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
^A+^B+^C=1800
⇒1000+200+^C=1800
⇒^C=1800−1000−200=600
⇒^A>^C>^B
Áp dụng quan hệ giữa cạnh và góc đối diện => BC > AB >AC
b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)
hok tốt !!!
a)Xét tam giác ABC: \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\), mà góc A =100 độ ⇒^B+^C=80 độ
Áp dụng công thức tổng tỉ, ta có: ^B= 80:4.3=60 độ
Vậy ^C=20 độ, từ đó so sánh 3 cạnh của tam giác
b) Từ câu trên, ta có: AB<AC (1)
Có HB là hình chiếu của AB (2)
Có HC là hình chiếu của AC (2)
Từ (1) và (2) có HB<HC
Xét tam giác ABC: ^A+^B+^C=180 độ, mà ^A=100 độ \(\Rightarrow\)^B+^C=80 độ
Áp dụng công thức tổng tỉ, ta có: ^B= 80:4.3=60 độ
Vậy ^C=20 độ, từ đó so sánh 3 cạnh của tam giác nha
Từ câu a, ta có: AB<AC (1)
Có HB là hình chiếu của AB (2)
Có HC là hình chiếu của AC (2)
Từ (1) và (2) có HB<HC
Xét tam giác ABC có:
^A+^B+^C=1800 (đ/l tổng....)
=>^B+^C=1800-^A=1800-1000=800
Mà ^B=3.^C
=>3^C+^C=800
=>4^C=800
=>^C=800:4=200
Khi đó ^B=3.^C=3.200=600
Xét tam giác ABC có: ^BAC > ^ABC > ^ACB (vì 1000 > 600 > 200)
=>BC > AC > AB (đ/l về.......)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{C}+70^0+60^0=180^0\)
hay \(\widehat{C}=50^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\left(70^0>60^0>50^0\right)\)
mà cạnh đối diện của \(\widehat{A}\) là cạnh BC
và cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên BC>AC>AB
góc A + góc B + góc C= 180 độ
⇒ 70 độ + 60 độ + góc C = 180 độ
⇒ góc C = 50 độ
mà góc A > góc B > góc C ⇒ cạnh BC > cạnh AC > cạnh AB ( cạnh đối diện vs góc lớn hơn là cạnh lớn hơn )
a, Áp dụng định lý tổng 3 góc của tam giác vào tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow100^0+20^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-100^0-20^0=60^0\)
\(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)
Áp dụng quan hệ giữa cạnh và góc đối diện \(\Rightarrow BC>AB>AC\)
b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)
1/ Ta có BC > AC > AB (7cm > 6cm > 5cm) => \(\widehat{A}>\widehat{B}>\widehat{C}\) (quan hệ giữa góc và cạnh đối diện trong tam giác)
2/ Ta có \(\widehat{C}=180^o-\widehat{A}-\widehat{B}\)(tổng ba góc của một tam giác)
=> \(\widehat{C}\)= 180o - 65o - 70o = 45o
=> \(\widehat{B}>\widehat{A}>\widehat{C}\)=> AC > BC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
3/ Ta có 18cm > 6cm + 11cm = 17cm không thoả mãn bất đẳng thức tam giác
=> Bộ ba (18cm; 6cm; 11cm) không phải là ba cạnh của một tam giác
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
\(\widehat{B}=60^0;\widehat{C}=20^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
ta có: \(A>B>C\Rightarrow BC>AC>AB\)