K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2022

Đây là 1 trường hợp của BĐT hình học quan trọng: BĐT Erdos-Mordell

Cách chứng minh bài này y hệt như cách người ta chứng minh BĐT nói trên.

Có khoảng gần 20 cách gì đó, em kiếm trên google thử coi, vì BĐT này quá quen thuộc rồi nên mình sẽ ko chứng minh lại ở đây.

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

a: Xét ΔAHE vuông tại H và ΔADB vuông tại D có

góc DAB chung

Do đó: ΔAHE đồng dạng với ΔADB

Suy ra: AH/AD=AE/AB

hay \(AH\cdot AB=AE\cdot AD\)

c: \(AE\cdot AD-HA\cdot HB\)

\(=AH\cdot AB-AH\cdot HB=AH\cdot AH=AH^2\)

2 tháng 7 2021

Mn giải hộ mik vs ạ 

 

Điểm I ở đâu vậy bạn?