Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề 1 xíu :
Cho tam giác ABC có AB < AC. Gọi D là trung điểm của BC. Trên tia đối của tia DA, đặt DE = DA, nối B và E. Chứng minh rằng:....
a, Xét \(\Delta\)ADC và \(\Delta\)EDB ta có :
DE = DA (gt)
^BDE = ^CDA (đđ)
BD = DC (gt)
=> \(\Delta\)ADC = \(\Delta\)EDB (c.g.c)
Bạn dựa vào khái niệm : Mối quan hệ giữa góc và cạnh đối diện
A B C D E
xét tg EDB và ADC
BDE =ADC(đối đỉnh)
BD=DC(gt)
AD=DE(gt)
=>2tg =Nhau
b) xét BDA và ADC
AD cạnh chung
BD=DC
AB<AC
=>BAD<DAC
=>góc BAD >ADC ( ABD < ACD ; ADB < ADC)
bạn cho k hỏi là chỗ =>BAD<DAC là góc BAD<góc DAC hay là tam giác BAD< tam giác DAC
Câu 1: Em tham khảo tại đây nhé.
Câu hỏi của trần thị minh hải - Toán lớp 7 - Học toán với OnlineMath