Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, theo định lý pitago tính đc BC
sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH
hok tốt
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay \(AD\cdot AC=AE\cdot AB\) và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE\(\sim\)ΔABC
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)
a) Xét ΔADB và ΔAEC có
\(\widehat{ADB}=\widehat{AEC}\left(=90^0\right)\)
\(\widehat{BAD}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
⇒\(\frac{AD}{AE}=\frac{AB}{AC}\)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
b) Ta có: ΔAEC vuông tại E(CE⊥AB)
⇒\(\widehat{ACE}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ACE}=90^0-\widehat{A}=90^0-60^0=30^0\)
Xét ΔACE vuông tại E có \(\widehat{ACE}=30^0\)(cmt)
nên \(\frac{AE}{AC}=\frac{1}{2}\)(trong tam giác vuông, cạnh đối diện với góc 300 bằng một nửa cạnh huyền)(1)
Ta có: \(\frac{AD}{AE}=\frac{AB}{AC}\)(cmt)
⇒\(\frac{AD}{AB}=\frac{AE}{AC}\)(tính chất của tỉ lệ thức)(2)
Từ (1) và (2) suy ra \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{2}\)
Xét ΔAED và ΔACB có
\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔAED∼ΔACB(c-g-c)
⇒\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AE}{AC}\right)^2\)(tỉ số diện tích giữa hai tam giác đồng dạng)
\(\Rightarrow\frac{S_{ADE}}{120}=\frac{1}{4}\)
\(\Rightarrow S_{ADE}=\frac{120\cdot1}{4}=30cm^2\)
Vậy: \(S_{ADE}=30cm^2\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
DO đó: ΔABD\(\sim\)ΔACE
b: Ta có: ΔABD\(\sim\)ΔACE
nên AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
c: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE\(\sim\)ΔABC
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)
a, xét tam giác ADI và tam giác AIC có : ^IAD chung
^ADI = ^AIC = 90
=> tam giác ADI đồng dạng tg AIC (g-g)
=> AI/AD = AC/AI (đn)
=> AI^2 = AD.AC
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)
Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)
b) Sửa đề: Cách đều điểm O
Ta có: ΔEBC vuông tại E(gt)
nên E,B,C cùng nằm trên đường tròn đường kính BC
hay E,B,C cùng nằm trên (O)(1)
Ta có: ΔDBC vuông tại D(gt)
nên D,B,C cùng nằm trên đường tròn đường kính BC
hay D,B,C cùng nằm trên (O)(2)
Từ (1) và (2) suy ra E,B,C,D cùng nằm trên (O)