K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

a, theo định lý pitago tính đc BC

sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH

hok tốt

15 tháng 5 2020

Theo định lý py ta go ta có

BC2=AC2+AB2 Hay BC2=289 => BC=17

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc BAD chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: AD/AE=AB/AC

hay \(AD\cdot AC=AE\cdot AB\) và AD/AB=AE/AC

b: Xét ΔADE và ΔABC có 

AD/AB=AE/AC

góc DAE chung

Do đó: ΔADE\(\sim\)ΔABC

Suy ra: \(\widehat{ADE}=\widehat{ABC}\)

a) Xét ΔADB và ΔAEC có

\(\widehat{ADB}=\widehat{AEC}\left(=90^0\right)\)

\(\widehat{BAD}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

\(\frac{AD}{AE}=\frac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)(đpcm)

b) Ta có: ΔAEC vuông tại E(CE⊥AB)

\(\widehat{ACE}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{ACE}=90^0-\widehat{A}=90^0-60^0=30^0\)

Xét ΔACE vuông tại E có \(\widehat{ACE}=30^0\)(cmt)

nên \(\frac{AE}{AC}=\frac{1}{2}\)(trong tam giác vuông, cạnh đối diện với góc 300 bằng một nửa cạnh huyền)(1)

Ta có: \(\frac{AD}{AE}=\frac{AB}{AC}\)(cmt)

\(\frac{AD}{AB}=\frac{AE}{AC}\)(tính chất của tỉ lệ thức)(2)

Từ (1) và (2) suy ra \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{2}\)

Xét ΔAED và ΔACB có

\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)

\(\widehat{EAD}\) chung

Do đó: ΔAED∼ΔACB(c-g-c)

\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AE}{AC}\right)^2\)(tỉ số diện tích giữa hai tam giác đồng dạng)

\(\Rightarrow\frac{S_{ADE}}{120}=\frac{1}{4}\)

\(\Rightarrow S_{ADE}=\frac{120\cdot1}{4}=30cm^2\)

Vậy: \(S_{ADE}=30cm^2\)

Câu b bạn làm sai rồi

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

DO đó: ΔABD\(\sim\)ΔACE

b: Ta có: ΔABD\(\sim\)ΔACE

nên AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)

c: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

Do đó: ΔADE\(\sim\)ΔABC

Suy ra: \(\widehat{ADE}=\widehat{ABC}\)

21 tháng 5 2022

Câu d giải giúp mk luôn với

12 tháng 4 2020

a, xét tam giác ADI và tam giác AIC có : ^IAD chung

^ADI = ^AIC = 90

=> tam giác ADI đồng dạng tg AIC (g-g)

=> AI/AD = AC/AI (đn)

=> AI^2 = AD.AC 

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AB=AD\cdot AC\)

Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{EAD}\) chung

Do đó: ΔADE\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)

b) Sửa đề: Cách đều điểm O

Ta có: ΔEBC vuông tại E(gt)

nên E,B,C cùng nằm trên đường tròn đường kính BC

hay E,B,C cùng nằm trên (O)(1)

Ta có: ΔDBC vuông tại D(gt)

nên D,B,C cùng nằm trên đường tròn đường kính BC

hay D,B,C cùng nằm trên (O)(2)

Từ (1) và (2) suy ra E,B,C,D cùng nằm trên (O)