K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) Xét tam giác ABD và tam giác AED có

AB=AE

BAD=DAE( vì AD là phân giác của BAC)

Cạnh AD chung

=> tam giác ABD= tam giác AED( c.g.c)

=>DB=DE

b) Có tam giác ABD= tam giác AED

=> ABD=AED

=>DBK=DEC( kề bù với 2 góc bằng nhau)

Xét tam giác BDK và tam giác EDC

BD=DE

BDK=EDC ( 2 góc đối đỉnh)

DBK=DEC

=> tam giác BDK= tam giác EDC ( g.c.g)

c) Tam giác BDK=tam giác EDC

=>DBK=DEC

Có DBK>C( DBK là góc ngoài tam giác ABC)

=>DEC>C

=>DC>DE

Mà DE=DE

=>DC>DB

4 tháng 4 2017

cam on

7 tháng 5 2016

a, 
xét tam giác ABD và tam giác ADE có
AB=AE (gt)
GÓC A1= GÓC A2 ( ad là tia phân giác)
ad chung
=> tam giác abd = tam giác ade (c.g.c)
b, xét tam giác BAI và tam giác EAI có:
AB=AE(gt)
A1=A2 (ad là tia phân giác)
AI chung
=> tam giác BAI = tam giác EAI (c.g.c)
=> BI=IE (2 cạnh t,ứng)
vì BI=BE ( cmt) => AI là đường trung trực của BE
P/s: 2 phần kia bạn tự làm nhé ak cái I là BE cắt AD tại I

23 tháng 4 2017

a)xet tam giac abd va tam giac aed co 

ab=ae

ad la canh chunggoc bad = goc ead

=>tam giác abd = ead

b)gọi i là giao điểm của ad và be

xét tam giác abi và tam giác aei có :

ab=ae

ad là cạnh chung

goc bai = góc eai

=> tam giác abi= tâm giác aei

=>ib=ie =>ad là đường trung trực của be

cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra

23 tháng 4 2017

mk giải tiếp nè

theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)

xét tam giác bfd và ecd có

góc dbf= góc dec

bd=ed

bdf=edc

=> tam giác dbf= tam giác ecd

k cho mk đi.mk hứa mk tl hết cho mà

14 tháng 6 2020

a hi hi

14 tháng 6 2020

tự kẻ hình nghen:3333

a) xét tam giác ABD và tam giác AED có

A1=A2(gt)

AD chung

AB=AE(gt)

=> tam giác ABD= tam giác AED(cgc)

=> BD=DE( hai cạnh tương ứng)

b) vi AD cắt BE tại K

xét tam giác ABK và tam giác AEK có

A1=A2(gt)

AK chung

AB=AE(gt)

=> tam giác ABK= tam giác AEK(cgc)

=> BK=EK( hai cạnh tương ứng)

=> AKB=AKE( hai góc tương ứng)

mà AKB+AKE=180 độ(kề bù)

=> AKB=AKE=180/2=90 độ

=> AD là trung trực của BE

c) ta có AD vuông góc với BE (AKB= 90 độ)

=> AB^2=AK^2+BK^2 (áp dụng định lý pytago)

=> AE^2=AK^2+EK^2 (áp dụng định lý pytago)

=> BD^2=BK^2+KD^2 (áp dụng định lý pytago)

=> DC^2=DE^2+KD^2( áp dụng định lý pytago)

=> AB^2+DE^2=AK^2+EK^2+DK^2+BK^2

=> AE^2+BD^2=AK^2+EK^2+DK^2+BK^2
=> AB^2+DE^2=AE^2+BD^2

7 tháng 5 2016

a) Xét tam giác ADB và tam giác ADE , có :

AB=AE (gt)

AD là cạch chung

góc BAD = góc EAD (vì tia AD là phân giác của tam giác ABC)

=>Tam giác ADB = tam giác ADE (c.g.c)

b) Vì AB = AE (gt); BD = DE (vì tam giác ADB = Tam giác ADE chứng minh câu a) 

=>AD là đường trung trực của BE ( tính chất đường trung trực của 1 đoạn thẳng)

c) Xét tam giác BFD và tam giác ECD, có :

Vì góc ABD + góc BFD = \(180^0\) (kề bù)

góc ADE + góc EDC = \(180^0\) (kề bù )

Mà góc ABD = góc AED ( vì tam giác ADB = tam giác ADE chứng minh câu a)

=> Góc FBD = góc CED

BD = ED (vì tam giác ADB = tam giác ADE)

Góc BDF = góc EDC (đối đỉnh)

=> Tam giác BFD = tam giác ECD (g.c.g)

d) câu này bạn biết rồi

5 tháng 5 2018

A B C D E F 1 2

a) Vì AD là tia phân giác của tam giác ABC => \(\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ABD và tam giác ADE có : \(\hept{\begin{cases}AE=AB\left(GT\right)\\\widehat{A_1}=\widehat{A_2}\left(cmt\right)\\Chung\end{cases}AD=>}\)Tam giác ADB=Tam giác ADE (c-g-c)    (đpcm)

b) Vì tam giác ADB= tam giác ADE ( cmt phần a) => DB = DE ( cạnh tương ứng ) => D thuộc đường trung trực cuae BE (1)

  Vì AB=AE(GT) => A thuộc đường trung trực của BE  (2).Từ (1);(2)=> AD là đường trung trực của BE  (đpcm)

c)Vì tam giác ADB=tam giác ADE ( cmt phần ) => \(\widehat{ABD=}\widehat{AED}\)(góc tương ứng) và \(\widehat{ADB}=\widehat{ADE}\)(góc tương ứng )

  Vì\(\widehat{FBD}\)là góc ngoài tam giác ABD => \(\widehat{FBD}=\widehat{ABD}+\widehat{ADB}\)

Vì \(\widehat{DEC}\)là góc ngoài tam giác ADE => \(\widehat{DEC}=\widehat{ADE}+\widehat{AED}\)

       \(=>\widehat{FBD}=\widehat{DEC}\)

Xét tam giác BDF và tam giác ECD có : \(\hept{\begin{cases}\widehat{FBD}=\widehat{DEC}\\BD=CE\left(cmt\right)\\\widehat{BDF}=\widehat{ECD}\end{cases}}\)=> Tam giác BDF = Tam giác ECD  (đpcm)

=> \(\hept{\begin{cases}CE=BF\\\widehat{C}=\widehat{BFD}\end{cases}}\)

 Vì DE = DB(cmt phần b) => Tam giác DBE cân tại D => \(\widehat{DBE}=\widehat{DEB}\)

Mà \(\widehat{FBD}=\widehat{CED}\)(cmt)=> \(\widehat{FBD}+\widehat{DBE}=\widehat{CED}+\widehat{DEB}=>\widehat{FBE}=\widehat{CEB}\)

Xét tam giác BCE và tam giác EFB có : \(\hept{\begin{cases}\widehat{BFD}=\widehat{ECD}\left(cmt\right)\\BF=CE\left(cmt\right)\\\widehat{FBE}=\widehat{CEB}\end{cases}}\)=> Tam giác BCE = Tam giác EFB (g-c-g)   (đpcm)

d) Vì \(\widehat{FBD}\)là góc ngoài của tam giác ABC => \(\widehat{FBD}=\widehat{ABC}+\widehat{ACB}=>\widehat{FBD}>\widehat{ACB}\)

      Mà \(\widehat{FCB}=\widehat{CED}=>\widehat{CED}>\widehat{ACB}\)=> Tam giác DEC có DC>DE

mà DE=DB( cmt phần b)=> DB <DC

12 tháng 5 2019

Ảnh nè: