Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BD=AB+AD=4+5=9\left(cm\right)\)
\(\Delta ABC\) và \(\Delta CBD\) có:
\(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)
Góc B chung
\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)
b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)
c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)
a) Xét \(\Delta ABC\)và \(\Delta MDC\)có:
\(\widehat{C}\) chung
\(\widehat{CAB}=\widehat{CMD}=90^0\)
suy ra: \(\Delta ABC~\Delta MDC\)(g.g)
b) Xét \(\Delta BMI\)và \(\Delta BAC\)có:
\(\widehat{B}\)chung
\(\widehat{BMI}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BMI~\Delta BAC\) (g.g)
\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow\)\(BI.BA=BC.BM\)
c) \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b) \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)
Xét \(\Delta BIC\)và \(\Delta BMA\)có:
\(\widehat{B}\)chung
\(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)
suy ra: \(\Delta BIC~\Delta BMA\) (g.g)
\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\) (1)
c/m: \(\Delta CAI~\Delta BKI\) (g.g) \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)
Xét \(\Delta IAK\)và \(\Delta ICB\)có:
\(\widehat{AIK}=\widehat{CIB}\) (dd)
\(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)
suy ra: \(\Delta IAK~\Delta ICB\)(g.g)
\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2)
Từ (1) và (2) suy ra: \(\widehat{IAK}=\widehat{BAM}\)
hay AB là phân giác của \(\widehat{MAK}\)
d) \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)
mà \(\widehat{MAB}=\widehat{ICB}\) (câu c)
\(\Rightarrow\)\(\widehat{ICB}=45^0\)
\(\Delta CKB\)vuông tại K có \(\widehat{KCB}=45^0\)
\(\Rightarrow\)\(\widehat{CBK}=45^0\)
\(\Delta MBD\) vuông tại M có \(\widehat{MBD}=45^0\)
\(\Rightarrow\)\(\widehat{MDB}=45^0\)
hay \(\Delta MBD\)vuông cân tại M
\(\Rightarrow\)\(MB=MD\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)
ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
ÁP dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)
suy ra: \(\frac{MB}{AB}=\frac{5}{7}\) \(\Rightarrow\)\(MB=\frac{40}{7}\)
mà \(MB=MD\) (cmt)
\(\Rightarrow\)\(MD=\frac{40}{7}\)
Vậy \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)
\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)
\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)
Vậy \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)
C A M B K D I
a) xét \(\Delta ABC\) và \(\Delta MDC\) có
\(\widehat{ACB}=\widehat{MCD}\) ( góc chung)
\(\widehat{CAB}=\widehat{CMD}=90^0\) ( giả thiết )
\(\Rightarrow\Delta ABC\infty\Delta MDC\) \(\left(g.g\right)\)
b) xét \(\Delta BIM\) và \(\Delta BCA\) có
\(\widehat{IBM}=\widehat{CBA}\) ( góc chung )
\(\widehat{BMI}=\widehat{BAC}=90^0\)
\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)
\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)
\(\Rightarrow BI.BA=BM.BC\)
P/S tạm thời 2 câu này trước đi đã
a) Xét \(\Delta EDC\)và \(\Delta BAC\)
có \(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ACB}\)chung
nên \(\Delta EDC\)\(\Delta BAC\)(g - g)
\(\Rightarrow\frac{EC}{BC}=\frac{CD}{AC}\Rightarrow\frac{EC}{CD}=\frac{BC}{AC}\)
Xét \(\Delta BEC\)và \(\Delta ADC\)
có \(\frac{EC}{CD}=\frac{BC}{AC}\)
\(\widehat{ACB}\)chung
nên \(\Delta BEC\)\(\Delta ADC\)(c - g - c)
Xét \(\Delta AHD\)
ta có AH = HD suy ra \(\Delta AHD\)cân tại H
mà \(\widehat{HAD}=90^0\)nên \(\Delta AHD\)vuông cân tại H
suy ra \(\widehat{ADH}=45^0\)
Gọi giao điểm của AD và BE là O
Xét \(\Delta AOE,\Delta BOD\)
có \(\widehat{OAE}=\widehat{OBD}\)(\(\Delta BEC\)\(\Delta ADC\))
\(\widehat{AOE}=\widehat{BOD}\)(đối đỉnh)
nên \(\Delta AOE\)\(\Delta BOD\)(g - g)
\(\Rightarrow\widehat{AEB}=\widehat{ADH}=45^0\)
Xét \(\Delta ABE\)vuông tại A
có \(\widehat{AEB}=45^0\)nên \(\Delta ABE\)vuông cân tại A
suy ra BE = 2\(\sqrt{AB}\)=\(2\sqrt{2}\)(cm)
b) Gọi giao điểm của AH và BE là I
dễ chứng minh \(\Delta HBA\)\(\Delta ABC\)(g - g)
\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)
có AB = 2 cm, BE = \(2\sqrt{2}\left(cm\right)\)
\(\Rightarrow\frac{AB}{BE}=\frac{1}{\sqrt{2}}\Rightarrow\frac{AB^2}{BE^2}=\frac{1}{2}\Rightarrow\frac{BH\cdot BC}{BE^2}=\frac{1}{2}\)
\(\Rightarrow\frac{BH}{BE}\cdot\frac{BC}{BE}=\frac{1}{2}\Rightarrow\frac{BH}{BE}=\frac{1}{2}\cdot\frac{BE}{BC}\Rightarrow\frac{BH}{BE}=\frac{BM}{BC}\)
Xét \(\Delta BHM\)và \(\Delta BEC\)
có \(\frac{BH}{BE}=\frac{BM}{BC}\)
\(\widehat{EBC}\)chung
nên \(\Delta BHM\)\(\Delta BEC\)(c - g - c)
\(\Rightarrow\widehat{IMH}\left(\widehat{BMH}\right)=\widehat{BCE}\)
mà \(\widehat{BCE}=\widehat{IAB}\)(cùng phụ với góc \(\widehat{B}\))
\(\Rightarrow\widehat{IMH}=\widehat{IAB}\)
dễ cm \(\Delta IAB\)\(\Delta IMH\)(g - g)
\(\Rightarrow\widehat{AHM}\left(\widehat{IHM}\right)=\widehat{IBA}=45^0\)
c) có AK là phân giác \(\Delta ABC\)
nên \(\frac{BK}{KC}=\frac{AB}{AC}\Rightarrow\frac{BK}{KC+BK}=\frac{AB}{AB+AC}\Rightarrow\frac{BK}{BC}=\frac{AB}{AB+AC}\)(1)
dễ cm \(\Delta ABH\)\(\Delta CAH\)(g - g)
\(\Rightarrow\frac{AB}{AC}=\frac{AH}{HC}\Rightarrow\frac{AB}{AB+AC}=\frac{AH}{AH+HC}\Rightarrow\frac{AB}{AB+AC}=\frac{HD}{AH+HC}\)(2)
từ (1) và (2) suy ra
\(\frac{BK}{BC}=\frac{HD}{AH+HC}\)
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h
a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))
Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)
b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)
Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)
c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))
Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)
Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\)
d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)
Để \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)
Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)
Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)