Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xet ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc MBD=góc NCE
=.ΔMDB=ΔNEC
=>DM=EN
2: Xét tứ giác MDNE có
MD//NE
MD=NE
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường và ME//ND
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
A B C D H E M
a) Xét tam giác ABC ta có
BC2=52=25
AB2+AC2=25
->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)
b) xét tam giác BAD và tam giác EDA ta có
BD=AE (gt)
AD=AD ( cạnh chung)
góc BDA = góc EAD ( 2 góc sole trong và AE//BD)
-> tam giac BAD= tam giac EDA (c-g-c)
=> AB=DE ( 2 cạnh tương ứng)
c)ta có
góc CAD+ góc BAD =90 (2 góc kề phụ)
góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)
góc BAD=góc DAH ( AD là tia p./g góc BAH)
->góc CAD=góc CDA
-> tam giác ADC cân tại C
d) Xét tam giác ADC cân tại C ta có
CM là đường trung tuyến ( M là trung điểm AD)
-> CM là đường cao
ta có
góc BAD= góc ADE ( tam giác BAD= tam giác EDA)
mà 2 góc nằm ở vị trí sole trong nên AB//DE
mặt khác AB vuông góc AC ( tam giác ABC vuông tại A)
do đó DE vuông góc AC
Gọi F là giao điểm DE và AC
Xét tam giác CAD ta có
DF là đường cao (DE vuông góc AC tại F)
AH là đường cao (AH vuông góc BC)
AH cắt DE tại I (gt)
-> I là trực tâm
mà CM cũng là đường cao tam giác ACD (cmt)
nên CM đi qua I
-> C,M ,I thẳng hàng
Gọi K là giao điểm của DN và BE
Ta có :
ΔBKD vuông tại K có:
^BDK + ^DBK = 90 độ (1)
ΔABC vuông tại A có:
^ABE + ^BEA = 90 độ (2)
Từ (1) và (2)
=> ^BDK = ^BEA = ^IDA (vì BDK và IDA là 2 góc đối đỉnh)
Xét Δ DAI vuông tại A và Δ EAB vuông tại A có:
AD = AE (gt)
^IDA = ^BEA (cmt)
==> Δ DAI = Δ EAB (cạnh góc vuông và góc nhọn kề)
=> AI = AB = AC (2 cạnh tương ứng)
=> A là trung điểm của CI (đpcm)
b) Gọi H là giao điểm của AM và BE
Có :
IK _|_ BE (gt)
AH _|_ BE (gt)
=> IK // AH
hay : IN // AM
Mà :
AI = IC (câu a)
=> MN = MC (hệ quả của tính chất đường trung bình trong tam giác)
Vậy MN = MC