Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C M D E F
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
( Mk vẽ hình xấu , chậc ! bn tự vẽ nhé ... ^.^ )
Xét \(\Delta ABM\)và \(\Delta ACM\)có :
AB=AC ( gt )
BM=CM ( M là trung điểm của BC )
AM : cạnh chung
do đó \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Có \(\Delta ABM=\Delta ACM\)( c/m câu a )
\(\Rightarrow\widehat{AMC}=\widehat{AMB}\) ( 2 góc tương ứng )
hay AM là tia phân giác của góc \(\widehat{BAC}\)
\(\Rightarrow\widehat{AMB}+\widehat{AMC}\) = 180 độ ( 2 góc kề bù )
mà góc AMB = góc AMC = \(\frac{180}{2}\)
\(\Rightarrow\)góc AMC = góc AMC = 90 độ
suy ra AM vuông góc với BC
a) Tam giác ABE = tam giác AME (c.g.c)
b) Từ tam giác ABE = tam giác AME ở câu a
=> góc AEB = góc AEM , BE = EM
=> góc IEB = góc IEM , BE= EM
Tam giác BIE = tam giác MIE (c.g.c)
=> IB = IM
=> I là trung điểm BM
c) tam giác ENB = tam giác ECM (c.g.c)
giai ho minh nhe