K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

( Mk vẽ hình xấu , chậc ! bn tự vẽ nhé ... ^.^ )

Xét \(\Delta ABM\)\(\Delta ACM\)có :

AB=AC ( gt )

BM=CM ( M là trung điểm của BC )

AM : cạnh chung

do đó \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Delta ABM=\Delta ACM\)( c/m câu a )

\(\Rightarrow\widehat{AMC}=\widehat{AMB}\) ( 2 góc tương ứng )

hay AM là tia phân giác của góc \(\widehat{BAC}\)

\(\Rightarrow\widehat{AMB}+\widehat{AMC}\) = 180 độ ( 2 góc kề bù )

mà góc AMB = góc AMC = \(\frac{180}{2}\)

\(\Rightarrow\)góc AMC = góc AMC = 90 độ

suy ra AM vuông góc với BC

26 tháng 12 2017

A B C M D

*Xét ΔABM và ΔACM có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)

⇒ ΔABM = ΔACM (c - c - c)

*Vì ΔABM = ΔACM (cmt)

\(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CD
19 tháng 4 2020

a, Xét tg ABM và tg ACM ,có :

AB=AC ( vì tg ABC cân tại A )

BM=CM ( M là trung điểm của BC )

AM chung

=> tg ABM=tg ACM ( c.c.c)

b, Vì tg ABC cân tại A nên :

+) AM là đường phân giác của góc BAC .

+) AM vuông góc với BC.

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

c: Xét ΔABI và ΔACI có

AB=AC
\(\widehat{BAI}=\widehat{CAI}\)

AI chung

DO đó: ΔABI=ΔACI

Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)

hay CI\(\perp\)CA

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

17 tháng 1 2019

CMR tam giác ABM = ACM

\(AB=AC\Rightarrow\Delta ABC\) cân tại \(A\) \(\Rightarrow\widehat{B}=\widehat{C}\)

Xét \(\Delta ABM-\Delta ACM\) có :

\(AB=AC\left(gt\right)\)

\(BM=CM\) ( do AM là tia phân giác )

\(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)

\(\Delta ABM=\Delta ACM\Rightarrow BM=CM\) ( cạnh tương ứng )

\(\Rightarrow M\) là trung điểm của BC

\(\widehat{ABM}+\widehat{ACM}=180^0_{ }\)

\(\widehat{ABM}=\widehat{ACM}=\dfrac{180}{2}=90^0_{ }\)

\(\Rightarrow AM\perp BC\)

12 tháng 1 2019
https://i.imgur.com/Dq7SWyK.jpg