Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABC có: AB = AC (gt) => Tam giác ABC cân tại A
Xét tam giác ABE và tam giác ACE:
^B = ^C (tam giác ABC cân tại A)
^BAE = ^CAE (AE là tia phân giác của góc BAC)
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABE = Tam giác ACE (g c g)
b/ Xét tam giác ABC cân tại A: AE là tia phân giác của góc BAC (gt)
=> AE là đường trung trực của đoạn thẳng BC (TC các đường trong tam giác cân)
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
Xét tg ABE và tg ACE có:
AB = AC (gt).
Góc BAE = Góc CAE (AE là phân giác của góc BAC).
AE chung.
=> tg ABE = tg ACE (c - g - c).
b) Xét tg ABC có: AB = AC (gt)
Tg ABC cân tại A.
Xét tg ABC cân tại A có:
AE là phân giác của góc BAC (gt).
=> AE đường trung trực của đoạn thẳng BC (tính chất các đường trong tg cân).
Vì AB = AC (gt) => tam giác ABC là tam giác cân tại A .
Mà trong tam giác cân, đường phân giác cũng là đường trung trực => BE = EC
Xét tam giác ABE và tam giác ACE:
AB = AC (gt)
BE = EC (cmt)
AE chung
=> tam giác ABE = tam giác ACE (c.c.c)
b) Ta lại có: trong tam giác cân, đường phân giác cũng là đường cao của tam giác đó. => AE vuông góc với BC tại E
Xét tam giác ABC:
BE = EC (ý a)
AE vuông góc với BC tại E. (cmt)
=> AE là đường trung trực của BC
A, xet ^ ABE va ^ AEC co :
AE chung
Goc BAE= goc EAC (vi AE la phan giac )
AB = AC ( do ^ ABC can tai A )
=>^ABE=^AEC(c.g.c)
=>BE=EC(2 canh tuong ung )
B,ta co AE la tia phan giac cua goc BAC
Ma ^ABC can tai A
=>AE vuong goc voi BC
Lai co BE = EC (cmt )
=> AE la duong trung truc cua BC