Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a/ - AB = AC ( gt )
ABM = ACM vì { - AM chung
(c.c.c) - MB = MC ( m là trung điểm )
b/ AB // DC k phải AB // BC
T/g ABM = t/g DCM ( c.g.c)
AM = DM ( gt )
Góc AMB = DMC ( đđ )
BM = CM ( gt )
Có ABM = DCM ( t/g ABM = t/g DCM )
Lại ở vị trí slt
=> AB // DC
c/
AB = AC ( gt )
=> ABC cân tại A
Có AM là trung tuyến ( m là trug điểm )
=> AM là đường cao ABC
=> AM vuông góc BC
a/ Xét tg ABM và tg ACM có
AB = AC ( gt)
BM = CM ( gt)
AM chung
=> tg ABM = tg ACM (ccc)
b/ ( Trên tia đối của tia MA chứ ko phải AM nha )
Xét tg AMC và tg DMB, có
MC = MB (gt)
AM = MD ( gt)
^AMC = ^BMD ( đđ )
=> tg AMC = tg DMB ( cgc)
=> AC = BD
c/ tg ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AD vuông góc BC (1)
Lại có AM = MD , BM = MC ( gt) (2)
Từ (1), (2) => ABCD là hình thoi
=> AB // CD
d/ Theo đề : AI // BC , AI = BC
=> ABCI là hình bình hành
=> AB // CI
Mà AB // BC ( cmt )
=> I , C ,D thẳng hàng
a) xét tam giac ABM và tam giac CDM có :
BM=CM (gt)
AM=DM (gt)
góc BMA= góc DMC (đối đỉnh)
=>tam giác ABM= tam giác CDM (c.g.c)
Mà góc BAM = góc CDM (vì nằm ở vị trí so le trong)
=>AB//DC
A B C M
a) + M là trung điểm của BC (gt)
\(\Rightarrow\)MB = MC ( tính chất) (1)
Xét tam giác ABM và tam giác ACM có: AM chung (2)
AB = AC (gt) (3)
(1)(2)(3) \(\Rightarrow\)Tam giác ABM = tam giác ACM (c-c-c)
Câu b mk thấy vô lí vì BC và AC k trùng nhau mà M là trung điểm của BC nên k thể là trung điểm của AC
Tam giác ABC cân tại A (do AB = AC)
M là trung điểm BC
=> AM là trung tuyến, phân giác, trung trực của tam giác ABC
a) Chứng minh tam giác ABM= ACM
Xét tam giác ABM và tam giác AMC, có
- AB = AC
- AM chung
- MB = MC
=> tam giác ABM= ACM (đpcm)
b) Gọi M là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. CM tam giác AIN=CIM suy ra AN//BC
Bạn viết sai đề bài thì phải, theo mình hiểu thì đề đúng phải là:
Gọi I là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. Chứng minh tam giác AIN=CIM suy ra AN//BC
Xét tam giác AIN và tam giác CIM, có
- AI = CI (I là trung điểm AC)
- IM = IN (I là trung điểm MN)
- góc I đối nhau
==> tam giác AIN = tam giác CIM (đpcm)
Xét tứ giác AMCN, có
- 2 đường chéo của tứ giác AMCN cắt nhau tại I
- I vừa là trung điểm AC, vừa là trung điểm MB
=> tứ giác AMNC là hình bình hành (định lý hình bình hành có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> AN // MC, mà MC nằm trên BC
=> AN // BC (đpcm)
c) Chứng minh AN vuông góc với AM
Ta có:
- AM vuông góc BC (AM là phân giác, trung trực, trung tuyến của tam giác ABC), nên AM vuông góc BC
- AN // BC (chứng minh trên)
=> AN vuông góc AM (đpcm)