K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

a/                       - AB = AC ( gt )

ABM = ACM vì {  - AM chung 

     (c.c.c)            - MB = MC ( m là trung điểm )

b/ AB // DC k phải AB // BC 

T/g ABM = t/g DCM ( c.g.c)

AM = DM ( gt )

Góc AMB = DMC ( đđ )

BM = CM ( gt )

Có ABM = DCM ( t/g ABM = t/g DCM )

Lại ở vị trí slt 

=> AB // DC

c/ 

AB = AC ( gt )

=> ABC cân tại A

Có AM là trung tuyến ( m là trug điểm )

=> AM là đường cao ABC 

=> AM vuông góc BC 

24 tháng 12 2020
さ→❖๖☆☆ I⃣K⃣K⃣I⃣ G⃣ấU⃣ A⃣N⃣I⃣M⃣E⃣❖༻꧂ •๖ۣۜTεαм ƒαʋσυɾĭтε αηĭмε⁀ᶦᵈᵒᶫ
24 tháng 12 2024

Đgnsghmdhmdhmdgmdgmydmyeyk

 

15 tháng 1 2019

A B C M E D

CM: a) Xét t/giác ABM và t/giác ACM

có AB = AC (gt)

  BM = MC (gt)

 AM : chung

=> t/giác ABM = t/giác ACM (c.c.c)

b) Ta có: t/giác ABM = t/giác ACM (cmt)

=> góc AMB = góc AMC (hai góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)

=> \(2\widehat{AMB}=180^0\)

=> \(\widehat{AMB}=180^0:2=90^0\)

=> AM \(\perp\)BC ( Đpcm)

c) Xét t/giác AMD và t/giác CED

có  AD = CD (gt)

 góc ADM = góc EDC (đối đỉnh)

DM = DE (gt)

=> t/giác AMD = t/giác CED (c.g.c)

=> góc MAD = góc DCE (hai góc tương ứng)

Mà góc MAD và góc DCE ở vị trí so le trong

=> AM // EC (Đpcm)

d) Ta có : t/giác MAD = t/giác DCE (cmt)

=> AM = CE (hai cạnh tương ứng)

Do AM // EC (cmt) => góc AMC + góc MCE = 1800 (trong cùng phía)

=> góc MCE = 1800 - góc AMC = 1800 - 900 = 900 (vì góc AMB = góc AMC mà góc AMB = 900 => góc AMC = 900)

Xét t/giác AMC và t/giác MCE

có AM = CE (cmt)

 góc AMC = góc MCE (cmt)

MC : chung

=> t/giác AMC = t/giác MCE (c.g.c)

=> ME = AC (hai cạnh tương ứng)

mà MD = DE = ME/2

hay AC/2 = MD (Đpcm)

14 tháng 12 2016

ai tl dùm cái

27 tháng 12 2016

Bạn tự vẽ hình nhá :/

a)Ta có:

AM là trung tuyến đồng thời là đường cao của tg ABC cân tại A (gt)

=> góc AMB =góc AMC =góc DMB =góc DMC =90*

Xét tg ABM và tg DMC ta có:

AM=DM (gt)

g AMB =g DMC =90* (cmt)

MB =MC (M là tđ BC)

=> tg AMB =tg DMC (c.g.c)

b)Vì AMB =DMC (cmt)

=> g ABM =g DMC (yếu tố tương ứng /yttư)

Mà 2 góc này ở vị trí so le trong

=> AB//CD

c)Vì AM là đường cao của tg ABC (ghi ở đầu bài rồi :/)

=> AM_|_BC

d)Theo đề bài, ta có:

g ABC =g ACB =30* (tg ABC cân)

Mà g A+g B+g C =180* (tổng 3 g trong 1 tg)

=> g A=180*-g B-g C=180*-30*-30*=120*

Vậy, nếu tg ABC có g A=120* thì g ABC=30*

28 tháng 12 2016

A B C D M

a,Xét \(\Delta ABM\) và  \(\Delta DCM\) ta có :

\(AM=MD\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

b, Vì \(\Delta ABM=\Delta DCM\)( Câu a )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên :

=> AB // DC 

c, Ta có : AM là trung tuyến đông thời cũng là đường cao của tam giác ABC cân tại A;

\(\Rightarrow AM⊥BC\)

câu d bn tự làm nha

22 tháng 3 2023

a) Xét tam giác AMB và tam giác AMC ta có:

AM chung

AB=AC (gt)

MB=MC (vì M là trung điểm của BC)

Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)

b) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc BAM=góc CAM (2 góc tương ứng)

Suy ra AM là tia phân giác của góc BAC (đpcm)

c) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc AMB=góc AMC(2 góc tương ứng)

Mà góc AMB+góc AMC=180 độ (2 góc kề bù)

Suy ra góc AMB=góc AMC=180 độ/2=90 độ

Suy ra AM vuông góc với BC tại M (đpcm)

Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)

 

15 tháng 7 2016

Xét tam giác ABM và tam giác DCM có: 

AM=MD

góc AMB=góc CMD ( đối đỉnh)

BM=CM ( M là trung điểm của BC)

=> tam giác ABM=tam giác DCM( c.g.c)

b) theo a): tam giác ABM=tam giác DCM => góc BAM=góc D

mà chúng là hai góc so le trong => AB//DC

c) Vì AB=AC=> tam giác ABC cân tại A

tam giác ABC có AM là đường trung tuyến nên đồng thời là đường trung trực => AM vuông góc vs BC

d)  Để góc ADC=30 độ thì góc BAM=30 độ

=> góc B= 90 độ-30 độ=60 độ

tam giác ABC cân tai A có góc B =60 độ

=> tam giác ABC đều

Vậy tam giác ABC đều thì góc ADC=30 độ

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau