K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

 a) Ta có \(\widehat{CEB}=\widehat{CAB}=90^o\) nên 4 điểm A, B, C, E cùng thuộc đường tròn đường kính BC.

 b) Kẻ \(FP\perp BC\) tại P. Ta thấy D là trực tâm tam giác FBC nên \(P\in DF\). Dễ thấy \(\Delta CDP~\Delta CBA\left(g.g\right)\) \(\Rightarrow\dfrac{CD}{CB}=\dfrac{CP}{CA}\) \(\Rightarrow CD.CA=CB.CP\)

CMTT, ta có \(BD.BE=BC.BP\)

Do đó \(CD.CA+BD.BE=CB.CP+BC.BP\) \(=BC\left(CP+BP\right)\) \(=BC^2\). Vậy đẳng thức được chứng minh.

16 tháng 7 2017

trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)

                                   AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)

tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)

2 tháng 9 2021

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{32}=4\sqrt{2}\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\)cm 

* Áp dụng hệ thức :\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)cm 

-> HC = BC - HB = 4\(\sqrt{2}\)- 2\(\sqrt{2}\) = 2 \(\sqrt{2}\)
sinB = \(\dfrac{AC}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

cosB = \(\dfrac{AB}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

tanB = \(\dfrac{AC}{AB}=\dfrac{4}{4}=1\)

cotaB = \(\dfrac{AB}{AC}=\dfrac{4}{4}=1\)

tương tự với tỉ số lượng giác ^C 

b, bạn cần cm cái gì ? ;-; 

b: Xét tứ giác AEHD có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: AEHD là hình chữ nhật

Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB

nên \(BD\cdot DA=DH^2\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(CE\cdot EA=EH^2\)

Xét ΔEHD vuông tại H, ta được:

\(ED^2=EH^2+HD^2\)

hay \(ED^2=DA\cdot DB+EA\cdot EC\)