Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B O A C D K H E
a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp
b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)
Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)
=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)
c, Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)
Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)
=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp
=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)
=> \(CE⊥BD\)(ĐPCM)
d, em xem lại xem có gõ sai đề không nhé
Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất.
Nhờ mọi người giải dùm e với.
Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá
HD
Câu 1.
Tự CM.
Câu 2:
Kẻ AO cắt đường tròn tại F
Để ý góc ADE=góc EBC=góc AFC
Mà góc CAF+góc FAC =90°
⇒góc ADE+góc FAC =90°hay AF ⊥ DE.
Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.
Câu 3:
Gọi giao CQ và BP là O’
Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)
⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’
⇒ các ΔBQN, ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C
⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi
A B C O F E K S P D Q M S'
a) Ta sẽ chứng minh SK đi qua điểm O cố định. Thật vậy, gọi OK cắt AP tại S', ta cần chứng minh S' trùng với S.
Ta có: ^CKF + ^BAC = ^CKF + ^CPE = ^CKF + ^CKE = 1800 => 3 điểm E,K,F thẳng hàng
Thấy ^FPE + ^PEF + ^PFE = ^BPC + ^PBK + ^CPK = ^OBP + ^OCP + ^PBK + ^CPK = ^OBK + ^OCK = 1800
=> Tứ giác BOCK nội tiếp. Mà OB = OC => ^BKO = ^CKO. Lại có: ^DKB = ^AEB = ^PKC
Suy ra: ^BKO - ^DKB = ^CKO - ^PKC => ^AKO = ^OKP
Mặt khác: ^AOK = ^AOB + ^BOK = 2.^ACB + ^BCK = ^ACK + ^ACB = ^BPK + ^APB = ^APK
=> Tứ giác AOPK nội tiếp => ^OAP = ^OKP => ^OAS' = ^OKA (Vì ^AKO = ^OKP)
=> \(\Delta\)OAS' ~ \(\Delta\)OKA (g.g) => OA2 = OS'.OK => OB2 = OS'.OK => \(\Delta\)OS'B ~ \(\Delta\)OBK (c.g.c)
=> ^OS'B = ^OBK. Tương tự: ^OS'C = ^OCK. Do đó: ^OS'B + ^OS'C = ^OBK + ^OCK = 1800 (Vì tứ giác BOCK nội tiếp)
=> 3 điểm B,S',C thẳng hàng => BC cắt AP tại S'. Vậy nên S trùng S' => 3 điểm O,S,K thẳng hàng => ĐPCM.
b) Từ câu a ta có: OD2 = OS.OK => \(\Delta\)ODS ~ \(\Delta\)OKD (c.g.c) => ^ODS = ^OKD = ^OKA = ^OAS
=> Tứ giác AOSD nội tiếp hay 4 điểm A,O,P,S cùng thuộc 1 đường tròn (1)
Ta lại có: ^CAP + ^PAD = ^CAD = ^CBD = ^BMD + ^BDM = ^SMD + ^BDQ = ^SMD + ^BAQ
Mà ^CAP = ^BAQ (gt) nên ^PAD = ^SMD hay ^SMD = ^SAD => 4 điểm A,S,D,M cùng thuộc 1 đường tròn (2)
Từ (1);(2) => 5 điểm A,O,S,P,M cùng thuộc 1 đường tròn. Do OA = OD nên ^AMO = ^DMO hay ^AMO = ^QMO
Xét \(\Delta\)AOQ cân tại O, một điểm M sao cho ^AMO = ^QMO (cmt). Dễ c/m AM = QM (Gợi ý: Lấy đối xứng của M qua OA)
Từ đó: OM là trung trực của AQ => OM vuông góc AQ (đpcm).
c) Kẻ OI vuông góc với BC tại I thì OI không đổi, vì BC cố định.
Theo t/c đường kính và dây thì I là trung điểm của BC.
cm tương tự câu b) để có BD // CF, suy ra tứ giác BHCF là hình bình hành mà I là trung điểm của BC suy ra I là trung điểm của HF
Vậy OI là đường tb của tam giác AHF => AH = 2.OI không đổi
Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB
Ta chứng minh được E,A,N và M, A, F thẳng hàng
=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định
=> Tâm I của đường tròn ngoại tiếp tam giác BMN nằm trên đường trung trực của đoạn thẳng BA'.