Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C
a) Vì \(\widehat{B}=\alpha\); \(\tan\alpha=\frac{5}{12}\)
\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)
mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)
\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)
Vậy \(AC=\frac{10}{3}\)
b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)
\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)
Vậy \(BC=\frac{26}{3}\)
Xét tam giác ABC vuông tại A có \(tan\alpha=\frac{3}{4}=\frac{AC}{AB}=\frac{AC}{8}\Leftrightarrow AC=\frac{3.8}{4}=\frac{24}{4}=6\left(cm\right)\)
Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
Vậy \(AC=6cm;BC=10cm\)
Vì tam giác ABC vuông tại A :
-> tan a = \(\frac{AC}{AB}\) Hay tan a = \(\frac{AC}{8}\)
Lại có tan a = \(\frac{3}{4}\) -. AC= \(\frac{8.3}{4}\)= 6
Xét tam giác ABC vuông tại A có :\(AC^2\)+ \(AB^2\)= \(BC^2\)
Tính ra BC = 10
CHÚNG BẠN HỌC TỐT :)))
Từ C kẻ đường cao xuống AB, giao với AB tại H
Trong tam giác vuông HBC có:
BC2 = CH2 + BH2 ( 1 )
Trong tam giác vuông ACH, ta có:
CH2 = AC2 - AH2 ( 2 )
Thay BH = / AB - AH / ( Xét cả hai trường hợp góc B nhỏ hơn và lớn hơn 90o ), ta được:
BH2 = / AB - AH /2 = AB2 + AH2 - 2AB . AH ( 3 )
Thay ( 2 ) và ( 3 ) vào ( 1 ) ta được:
BC2 = ( AC2 - AH2 ) + ( AB2 + AH2 -2.AB.AH )
= AB2 + AC2 -2.AB.AH
= AB2 + AC2 - 2.AB.AC.cosA
Hay: BC = b2 +c2 - 2bc. cos \(\alpha\).
A C B b a c H