Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do tam giác ABC có \(\widehat{B}>\widehat{C}\)
\(\Rightarrow AB< AC\)
b) câu b đề bài bạn ghi sai hết sạch em kiểm tra lại đề nhé
câu b nè :
xét \(\Delta AMB\)và \(\Delta CMD\):
AM = DM ( gt)
\(\widehat{AMB}=\widehat{CMD}\)( đối đỉnh)
=> CD =
BM = CM ( gt)
=> \(\Delta AMB\)=\(\Delta CMD\)(c.g.c)
=>AB=CD ( 2 cạnh tương ứng)
câu còn lại dễ rồi bạn tự làm đi nehs ( vì mik phải đi học lun về r mik giải típ cho
A B C M D
*Xét ΔABM và ΔACM có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)
⇒ ΔABM = ΔACM (c - c - c)
*Vì ΔABM = ΔACM (cmt)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CDa/ Áp dụng định lí Pytago vào tam giác vuông ABC ta được:
BC^2=AB^2+AC^2=3^2+4^2=5^2
=> BC=5 cm
b)c/m tam giác BAM= tam giác CDM=><ABC=<DCB mà 2 góc này là 2 góc so le trong=>AB//DC
VÌ tam giác BAM= tam giác CDM=> AB=CD
A B C N M
a) Chứng minh AM vuông góc với BC
\(\Delta ABC\) có AB = AC \(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow\) AM là đường trung tuyến đồng thời là đường cao
Hay AM \(\perp\) BC.
b) Chứng minh: AC // BN
Xét hai tam giác vuông AMC và NMB có:
MA = MN (gt)
MB = MC (gt)
\(\Rightarrow\Delta AMC=\Delta NMB\left(hcgv\right)\)
\(\Rightarrow\) \(\widehat{MAC}=\widehat{MNB}\)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AC // BN (đpcm).