K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

tu ve hinh : 

a, AE | AB va AD | AC (gt) => goc DAC = goc BAE = 90 (dn)

goc DAB + goc BAC = goc DAC

goc EAC + goc CAB = goc BAE 

=> goc DAB = goc CAE 

xet tamgiac BDA va tamgiac ECA co : 

AD = AC (gt) va AB = AE (gt)

=> tamgiac BDA = tamgiac ECA  (c - g - c)

=> BD = CE (dn)

19 tháng 12 2018

a/ Xét tg ABM và tg ACM có

AB = AC ( gt)

BM = CM ( gt)

AM chung

=> tg ABM = tg ACM (ccc)

b/ ( Trên tia đối của tia MA chứ ko phải AM nha )

Xét tg AMC và tg DMB, có

MC = MB (gt)

AM = MD ( gt)

^AMC = ^BMD ( đđ )

=> tg AMC = tg DMB ( cgc)

=> AC = BD

c/ tg ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AD vuông góc BC (1)

Lại có AM = MD , BM = MC ( gt) (2)

Từ (1), (2) => ABCD là hình thoi 

=> AB // CD

d/ Theo đề : AI // BC , AI = BC

=> ABCI là hình bình hành

=> AB // CI

Mà AB // BC ( cmt )

=> I , C ,D thẳng hàng

29 tháng 3 2019

Bạn hiền, tôi đây chưa học hình bình hành!!!

28 tháng 3 2021

Bài làm nè bạn nhớ k mình nha

answer-reply-image

answer-reply-image

31 tháng 3 2023

loading...  help mik vs

1 tháng 1 2019

A B C E F D M N

a) Xét \(\bigtriangleup BCE \) và \(\bigtriangleup CBD\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECB}=\widehat{CBD}\)(2 góc sole trong do BD//CE)

\(BC-chung\)

\(\implies \bigtriangleup BCE=\bigtriangleup CBD(c.g.c)\)

b) Có: \(\bigtriangleup BCE=\bigtriangleup CBD(cmt)\)

\(\implies EB=CD\)(1)

Có: AB=CD(gt)

\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=CF\)(2)

Từ (1) và (2) \(\implies CD=CF\)

Có: AB=CD(gt)

\(\implies \bigtriangleup ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc ở đáy)

Xét \(\bigtriangleup ECB\) và \(\bigtriangleup FBC\)  có:

\(EB=FC(cmt)\)

\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)

\(BC-chung\)

\(\implies \bigtriangleup ECB=\bigtriangleup FBC(c.g.c)\)

\(\implies BF=CE\)(2 cạnh tương ứng)

c) Có: \(\bigtriangleup BCE= \bigtriangleup CBD\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)

Gọi FD giao BC tại N

Xét \(\Delta FCN\) và \(\Delta DCN\) có;

\(CF=CD\)(câu b)

\(\widehat{FCN}=\widehat{DCN}\left(cmt\right)\)

\(CN-chung\)

\(\Rightarrow\Delta FCN=\Delta DCN\left(c.g.c\right)\)

\(\Rightarrow\widehat{CNF}=\widehat{CND}\)(2 góc tương ứng)

Mà \(\widehat{CNF}+\widehat{CND}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{CNF}=\widehat{CND}=90^o\Rightarrow FD\perp BC\)

d) Xét \(\Delta EMC\) và \(\Delta DMB\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECM}=\widehat{MBD}\)

\(MB=MC\)(vì M-trung điểm BC)

\(\Rightarrow\Delta EMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{EMC}=\widehat{DMB}\)(2 góc tương ứng)

Mà \(\widehat{BME}+\widehat{EMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{BME}+\widehat{DMB}=180^o\)

\(\Rightarrow EM\equiv MD\)

\(\implies E;M;D\) thẳng hàng

_Học tốt_

31 tháng 12 2018

d) Ta có EC // BD và EC = BD ( tam giác BCE = tam giác CBD )

=> tứ giác BECD là hình bình hành

=> ED giao BC tại trung điểm mỗi đường

Mà M là trung điểm của BC nên M là trung điểm của ED

=> M, E, D thẳng hàng ( đpcm )

23 tháng 4 2018

A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)

Xét \(\Delta ABM\)\(\Delta ACM\) có :

AB=AC (gt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)

b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:

\(\widehat{H}=\widehat{K}\left(=90^o\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)

=>BH = CK (2 cạnh tương ứng)