K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

câu a) bạn dựa vào đường cao nhé!(do góc bdc vuông, bec vuông)

b)bạn chỉ cần chứng minh adie là tứ giác nội tiếp  ( adi+aei=180)

là có thề suy ra hai góc trên bằng nhau

21 tháng 1 2021

Vì góc BOC= 180 độ=> sđ cung BC=180 độ => góc BEC=180/2=90 độ => BE vuông góc với AC=> BE là đường cao. Tương tự: có góc BDC=90 độ => DC là đường cao của tam giác ABC.                               Mà I là giao điểm của BE và CD => AI vuông góc với BC

31 tháng 10 2021

a: Xét (O) có

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBEC vuông tại E

28 tháng 7 2018

Mình tích rồi

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

hay CD\(\perp\)AB

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

hay BE\(\perp\)AC

b: Xét tứ giác BDEC có 

\(\widehat{BDC}=\widehat{BEC}=90^0\)

nên BDEC là tứ giác nội tiếp

c: Xét ΔBAC có

BE là đường cao

CD là đường cao

BE cắt CD tại K

Do đó: K là trực tâm

=>AK\(\perp\)CB

16 tháng 7 2020

A D B E K O C

a. Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại D.

Suy ra: \(CD \perp AB\)

Tam giác BCE nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại E.

Suy ra: \(BE \perp AC\)

b. K là giao điểm của hai đường cao CD và BE nên K là trực tâm của tam giác ABC

Suy ra: \(AK \perp BC\)

3 tháng 1 2017

a, Có O là trung điểm của BC

Mà D ∈ (O; 1 2 BC) => OB = OD = OC

=> ∆BDC vuông tại D => CDAB

Tương tự BE ⊥ AC

b, Xét ∆ABC có K là trực tâm => AKBC