Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhá
Vì tam giác ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B}=\widehat{DME}\)
Suy ra: \(\widehat{C}=\widehat{DME}\)
Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)
Suy ra: \(\widehat{BMD}=\widehat{MEC}\)
Xét tam giác BMD và tam giác CEM có:
+ \(\widehat{B}=\widehat{C}\)(gt)
+\(\widehat{BMD}=\widehat{MEC}\)(cmt)
Do đó: \(\Delta BMD~\Delta CEM\)(g.g)
Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi
ý c nhé, a và b dễ tự làm nhé:
https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF
hinh bn tu ve nhe
\(\infty:\)dong dang
\(\Delta ABD\infty\Delta ACE\)(g.g) \(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
\(\Rightarrow AE.AB=AD.AC\) (1)
\(\Delta AMB\infty\Delta AEM\)(g.g) \(\Rightarrow\frac{AM}{AE}=\frac{AB}{AM}\Rightarrow AM^2=AE.AB\)(2)
\(\Delta ANC\infty\Delta ADN\)(g.g) \(\Rightarrow\frac{AN}{AD}=\frac{AC}{AN}\Rightarrow AN^2=AD.AC\)(3)
Tu (1), (2), (3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)
\(\Rightarrow\)\(\Delta AMN\)can tai A
Bài 1:
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔACE(g-g)
2.
ĐK: \(x\ne0\)
\(10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x-5\right)^2-5\)
\(\Leftrightarrow10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x}-x^2-\dfrac{1}{x^2}-2\right)^2=\left(x-5\right)^2-5\)
\(\Leftrightarrow10\left(x+\dfrac{1}{x}\right)^2-10\left(x^2+\dfrac{1}{x^2}\right)=\left(x-5\right)^2-5\)
\(\Leftrightarrow\left(x-5\right)^2-5=20\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=5\\x-5=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=0\left(l\right)\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=10\)
a) Chứng minh tam giác AED đông dang tam giác ACB
b) Kẻ HI vuông góc BC
Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.
Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE(g-g)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{AB}{AD}=\frac{AC}{AE}\)
Xét ΔABC và ΔADE có
\(\frac{AB}{AD}=\frac{AC}{AE}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔABC∼ΔADE(c-g-c)
\(\Rightarrow\widehat{ACB}=\widehat{AED}\)(hai góc tương ứng bằng nhau)(đpcm)