Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
kẻ DK//CE
góc DKB=góc ACB
=>góc DKB=góc DBK
=>DK=DB=CE
Xét tứ giác DKEC có
DK//EC
DK=EC
=>DKEC là hình bình hành
=>DE cắt KC tại trung điểm của mỗi đường
=>I là trung điểm của KC
=>B,I,C thẳng hàng
lớp 7...................................................mới 6
CHTT or link sau :
→ Câu hỏi của Nguyễn Hoàng Anh - Toán lớp 7 - Học toán với OnlineMath
A B C D E I
Ta có: △ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\) (1)
DF//AC\(\Rightarrow DF//EC\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{DFB}\left(2\right)\\\widehat{FDI}=\widehat{IEC}\left(3\right)\end{cases}}\)
Từ (1);(2) ⇒ ABC=DFB
⇒ △DFB cân tại D
⇒ BD=DF.
Mà BD=CE(gt) ⇒ CE=DF.
Xét △FDI và △CEI có:
DF=CE(cmt)
FDIˆ=IECˆ (cmt)
DI=IE(I là trung điểm DE)
⇒ △FDI = △CEI (c-g-c)
⇒ FID=EIC(HAI GÓC TƯƠNG ỨNG)
Ta có: DIC+CIE= 180
Mà FID=EIC (cmt)
⇒ DIC+DIF = 180
⇒ FIC=1800
Hay BIC=1800
⇒ 3 điểm B,I,C thẳng hàng (đpcm)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
Câu hỏi của Nguyễn Hoàng Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài làm tại link này.
A B C D F I E
+ Từ D kẻ DF // AC \(\left(F\in BC\right)\)
\(\Rightarrow\widehat{DFB}=\widehat{ACB}\)( VÌ 2 góc đồng vị ) (1)
+ Vì \(\Delta ABC\)cân tại A (gt)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)( tính chất của tam giác cân ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{DFB}=\widehat{ABC}\)
Hay \(\widehat{DFB}=\widehat{DBF}\)
\(\Rightarrow\Delta DBF\)cân tại D
\(\Rightarrow BD=FD\)( tính chất của tam giác cân )
Mà BD = CE ( gt )
\(\Rightarrow FD=CE\)
+ Vì DF // AC ( cách vẽ )
\(\Rightarrow DF//CE\)
\(\Rightarrow\widehat{FDI}=\widehat{CEI}\)( vì 2 góc so le trong )
Xét \(\Delta FDI\)và \(\Delta CEI\)có :
\(FD=CE\left(cmt\right)\)
\(\widehat{FDI}=\widehat{CEI}\left(cmt\right)\)
\(DI=EI\)( v ì I là trung điểm của DE ) ( gt)
Suy ra \(\Delta FDI=\Delta CEI\left(c.g.c\right)\)
\(\Rightarrow\widehat{FID}=\widehat{CIE}\)( 2 góc tương ứng )
Ta có : \(\widehat{CID}+\widehat{CIE}=180^0\)( kề bù )
Mà \(\widehat{FID}=\widehat{CIE}\left(cmt\right)\)
\(\Rightarrow\widehat{CID}+\widehat{FID}=180^0\)
\(\Rightarrow\widehat{FIC}=180^0\)
Hay \(\widehat{BIC}=180^0\)
\(\Rightarrow3\)diểm B , I , C thẳng hàng ( đpcm )
Chúc bạn học tốt !!!
kẻ DF vuong goc voi BC, FH vuong voi BC
tam giac BFD va CHE vuong tai F va H có
F=H(90do)
B=C
BD=CE
->2 tam giac = nhau (canh huyen-goc nhon)
->DF=EH
gọi Z là giao diem cua BC va DE
xet tam giac DFZ va FHZ có
DF=HE
F=H( 90 do )
goc DZF= goc HZE(doi dinh)
->2 tam giac = nhau (canh goc vuong-goc nhon)
->DZ=ZF->Z la trung diem cua DE
vì Z la trung diem cua MN mà I cung la trung diem cua MN ->Z=I ->BIC thang hang
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)