Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: Xét tứ giác NKIM có
D là trung điểm của NI
D là trung điểm của KM
Do đó: NKIM là hình bình hành
mà NI vuông góc với KM
nên NKIM là hình thoi
c: Xét ΔABC có DN//AB
nên DN/AB=CN/CA=CD/CB
=>CN=1/2CA
hay N là trung điểm của AC
Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2
hay BM=1/2BA
=>M là trung điểm của AB
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên MA=MH
Ta có: ΔAHC vuông tại H
mà HN là đừog trung tuyến
nên HN=AN
Xét ΔMAN và ΔMHN có
MA=MH
AN=HN
MN chung
Do đó: ΔMAN=ΔMHN
Suy ra:góc MHN=90 độ
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
A B C H D E N M F
a) Tam giác ABC cân tại A có đường cao AH xuất phát từng đỉnh nên đồng thời là đường trung tuyến.
Từ đó H là trung điểm BC. Có ngay: DH là đường trung bình nên DH// AC -> Tứ giác ADHC là hình thang.
b) Chứng minh AN \(\perp\) HM
Gọi giao điểm của AN và HM là F. Cần chứng minh ^AFH = 90o.
Tới đây tịt ngòi rồi:(( khi nào nghĩ ra làm tiếp:v
Làm nốt bài tth_new nha.
Xét tam giác EHC có NH là đường trung bình nên \(NM//HC\Rightarrow NM\perp AH\)
Mà \(HE\perp AC\) nên N là trực tâm.Khi đó \(AN\perp HM\)