Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hthang
b, Vì M,P là trung điểm AB,BC nên MP là đtb tg ABC
Do đó MP//AC hay MP//AN và \(MP=\dfrac{1}{2}AC=AN\)
Do đó AMPN là hbh
c, Vì M là trung điểm KH và AB nên AKBH là hbh
Mà \(\widehat{AHB}=90^0\) nên AKBH là hcn
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: Xét tứ giác NKIM có
D là trung điểm của NI
D là trung điểm của KM
Do đó: NKIM là hình bình hành
mà NI vuông góc với KM
nên NKIM là hình thoi
c: Xét ΔABC có DN//AB
nên DN/AB=CN/CA=CD/CB
=>CN=1/2CA
hay N là trung điểm của AC
Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2
hay BM=1/2BA
=>M là trung điểm của AB
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên MA=MH
Ta có: ΔAHC vuông tại H
mà HN là đừog trung tuyến
nên HN=AN
Xét ΔMAN và ΔMHN có
MA=MH
AN=HN
MN chung
Do đó: ΔMAN=ΔMHN
Suy ra:góc MHN=90 độ
a) Vì \(\Delta ABC\) cân tại \(A\) nên \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)
Vì \(\Delta ABC\) cân tại \(A\), có \(AH\) là trung tuyến (gt)
Suy ra \(AH\) là đường cao
Suy ra \(AH \bot BC\)
Suy ra \(\widehat {{\rm{AHB}}} = \widehat {{\rm{AHC}}} = 90^\circ \)
Xét \(\Delta AHB\) vuông tại \(H\) ta có: \(HD\) là trung tuyến
Suy ra \(HD = \frac{1}{2}AB\)
Mà \(DA = DB = \frac{1}{2}AB\) (do \(D\) là trung điểm \(AB\))
Suy ra \(DA = DB = HD\)
Suy ra \(\Delta DHB\) cân tại \(D\)
Suy ra \(\widehat {{\rm{ABC}}} = \widehat {{\rm{DHB}}}\)
Mà \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)
Suy ra \(\widehat {{\rm{DHB}}} = \widehat {{\rm{ACB}}}\)
Mà hai góc ở vị trí đồng vị
Suy ra \(DH\) // \(AC\)
Suy ra \(ADHC\) là hình thang
b) Vì \(E\) đối xứng với \(H\) qua \(D\) (gt)
Suy ra \(D\) là trung điểm của \(HE\)
Xét tứ giác \(AHBE\) ta có:
Hai đường chéo \(HE\) và \(AB\) cắt nhau tại trung điểm \(D\)
Suy ra \(AHBE\) là hình bình hành
Mà \(\widehat {{\rm{AHB}}} = 90^\circ \) (cmt)
Suy ra \(AHBE\) là hình chữ nhật
c) Vì \(AHBE\) là hình chữ nhật (cmt)
Suy ra \(AH\) // \(BE\) và \(AH = BE\)
Xét \(\Delta DEN\) và \(\Delta DHM\) ta có:
\(\widehat {{\rm{NED}}} = \widehat {{\rm{DHM}}}\) (do \(BE\) // \(AH\))
\(DE = DH\) (do \(D\) là trung điểm của \(HE\))
\(\widehat {{\rm{EDN}}} = \widehat {{\rm{MDH}}}\) (đối đỉnh)
Suy ra \(\Delta DEN = \Delta DHM\) (g-c-g)
Suy ra \(EN = MH\) (hai cạnh tương ứng)
Mà \(BE = AH\) (cmt)
Suy ra \(BE - EN = AH - MH\)
Suy ra \(NB = AM\)
Mà \(NB\) // \(AM\) (do \(EB\) // \(AH\))
Suy ra \(AMBN\) là hình bình hành
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
c) E là điểm đối xứng của H qua M
\(\Rightarrow\)ME = MH
Tứ giác AHBE có MA = MB (gt); ME = MH (gt)
\(\Rightarrow\)AHBE là hình bình hành
mà \(\widehat{AHB}\)= 900
\(\Rightarrow\)hình bình hành AHBE là hình chữ nhật