K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mik vẽ là B bên trái và C bên phải nha

Ta có BE là đường trung tuyến => B1 = B2

Tương tự C1 = C2

Ta có  M , N là trung điểm của GB và GC => MN là đừng trung bình của tam giác GBC

=> MN // BC => MNCB là hình thang ( 1 )

Ta có : B1 = B2 ; C1 = C2

Mà B = C 

=> B2 = C2 ( 2 )

Từ  ( 1) và ( 2 ) => MNCB là hình thang cân 

T nha các bạn

Đề sai rồi bạn ơi:

Nếu tam giác ABC là tam giác bất kì thì trường

hợp hình thang BMNC là cân ko thể xảy ra.

MIK vẽ hình rồi

a: Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

hay BCMN là hình thang

Xét ΔABC có AN/AB=AM/AC=1/2

nên NM//BC và NM=1/2BC(1)

Xét ΔGBC có GP/GB=GQ/GC=1/2

nên PQ//BC và PQ=BC/2(2)

Từ (1), (2) suy ra NM//PQ và NM=PQ

=>MNPQ là hình bình hành

Bài 1: 

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra NM//IK và NM=IK

25 tháng 8 2021

Xin lời giải câu b vs ạ

19 tháng 9 2019

Bắt chước Geogebra để vẽ hình trên olm:

A B C D E G M N

a) Dễ thấy MN là đường trung bình tam giác GBC nên MN // BC. Do đó tứ giác MNCB là hình thang.(mình nghĩ đề là chứng minh MNCB là hình thang cân chứ? Cho nó phức tạp xíu:D)

b) Từ đề bài ta có ngay DE là đường trung bình tam giác ABC nên DE // BC. Kết hợp MN // BC suy ra MN // DE.

*Chứng minh EM // DM: Mình thấy nó hơi sai sai ở cái đề.

c) Đề có sai hem?

a) \(\Delta ABC\) có: M là trung điểm AB (gt)
                         N là trung điểm AC (gt)
                \(\Rightarrow MN\) là đường trung bình \(\Delta ABC\)
                \(\Rightarrow MN\)//\(BC\)
Tứ giác BMNC có: MN//BC (cmt), \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
                         \(\Rightarrow BMNC\) là hình thang cân (đpcm)
b) AP là đường trung tuyến \(\Delta ABC\) (gt) nên P là trung điểm BC
A và Q đối xứng nhau qua P (gt) nên P là trung điểm AQ
Tứ giác ABQC có: BC và AQ là 2 đường chéo giao nhau tại P
                        mà P là trung điểm BC
                              P là trung điểm AQ
                     \(\Rightarrow ABQC\) là hình bình hành (đpcm)

5 tháng 11 2021

còn AQ = 3AK đâu bạn

22 tháng 12 2021

a: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân