K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

a)   Xét 2 tam giác vuông  \(\Delta EBC\)và      \(\Delta DCB\)có:

      \(BC:\)cạnh chung

      \(\widehat{EBC}=\widehat{DCB}\)  

suy ra:   \(\Delta EBC=\Delta DCB\)    (ch_gn)

\(\Rightarrow\)\(BD=EC\)   (cạnh tương ứng)

b)    \(\Delta ABC\)có   các đường cao  \(BD,EC\)cắt nhau tại   \(H\)

\(\Rightarrow\)\(H\)là trực tâm của   \(\Delta ABC\)

\(\Rightarrow\)\(AH\)là đường cao của   \(\Delta ABC\)

\(\Rightarrow\)\(AH\perp BC\)

c)   \(\Delta ABC\)cân tại   A    có  AH  là đường cao

nên  AH  đồng thời là đường phân giác

\(\Rightarrow\)\(\widehat{EAH}=\widehat{DAH}\)  (đpcm)

7 tháng 1 2019

a) Xét tam giác BDC và tam giác CEB có:

 Góc B = Góc C ( vì AB = AC => tam giác ABC cân tại A ) 

Góc BDC = Góc CEB ( = 90 độ )

BC : cạnh chung

Do đó : Tam giác BDC = tam giác CEB ( cạnh huyền - góc nhọn )

=> BD = CE ( hai cạnh tương ứng )

b) Xét tam giác 

            

7 tháng 1 2019

c) Ta có AB = AC(gt)

Tam giác BDC = Tam giác CEB ( cm câu a )

=> AE = AD (2 góc tương ứng)

Mà AB - AE = AC - AD

<=> BE = CD (1)

Mặt khác góc BEI = góc CDI (2)

góc EIB = góc DIC ( đđ )

=> góc EBI = góc DCI (3)

Từ (1),(2) và (3) => Tam giác IBE = tam giác  IDC( cạnh góc vuông - góc nhọn kề )

=> IB = IC ( 2 cạnh tương ứng )

=> I nằm trên đường trung trực BC (1)

Ta lại có AB = AC ( gt )

=> A nằm trên đường trung trực của BC (2)

Từ (1) và (2) => Ba điểm A , I , H là ba điểm thẳng hàng ( đpcm )

Tk nhé bạn

a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có 

AC=AB(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔAEC=ΔADB(cạnh huyền-góc nhọn)

Suy ra: AE=AD(hai cạnh tương ứng)

Xét ΔAED có AE=AD(cmt)

nên ΔAED cân tại A(Định nghĩa tam giác cân)

3 tháng 3 2018

a ) Xét tam giác ABD và tam giác ACE có : 

AB = AC ( tam giác ABC cân ) 

Góc BAC chung 

ADB = AEC (  = 90 độ ) 

=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn ) 

=>  AD = AE 

Xét tam giác AEH và tam giác ADH có : 

AE = AD  

AEH = ADH ( = 90 độ ) 

AH chung 

=> tam giác AEH = tam giác ADH (  ch cgv ) 
=>  góc EAH = góc DAH 

hay góc BAI = góc CAI 
Xét tam giác BAI và tam giác CAI có : 

AB = AC 

góc BAI  = góc CAI 

AI chung

=> tam giác BAI = tam giác CAI 

=> AIB = AIC 

MÀ AIB + AIC = 180 độ ( kề bù ) 

=> AI vuông góc BC

hay AH vuông góc BC 

3 tháng 3 2018

giúp mk với ná

7 tháng 2 2018

a. xét tam giác ABD và tam giác ACE có

BDA=CEA=90 độ

AB=AC (do tam giác ABC cân tai A)

Chung góc A

Suy ra: tam giác ABD= tam giác ACE

Suy ra: BD=CE (hai cạnh tương ứng)

Xét \(\Delta\)BEC và \(\Delta\)CDB, có:

^ABC=^ACB (\(\Delta\)ABC cân tại A)

BC _ chung

^BEC=^BDC=900

=> \(\Delta\)BEC=\(\Delta\)CDB ( g.c.g )

=> BD=EC