Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nè câu a) CM : BD=CE
mà sao đề cho BO
mình làm theo BD nhé
a) xét tam giác zuông BEC zà tam giác zuông BDC có
\(\hept{\begin{cases}ch:BC\left(chung\right)\\gn:\widehat{EBC}=\widehat{DCB}\left(ABCcân\right)\end{cases}}\)
=> 2 tam giác zuông trên = nhau nha
=>EB=DC
+) xét tam giác zuông BEH zà tam giác zuông DHC có
\(\hept{\begin{cases}gn:\widehat{EHB}=\widehat{DHC}\left(đđ\right)\\cgz:EB=DC\left(cmt\right)\end{cases}}\)
=> 2 tam giác zuông kia = nhau
=> BD=CE
b) câu b ghi đề trả hiểu j
a. xét tam giác ABD và tam giác ACE có
BDA=CEA=90 độ
AB=AC (do tam giác ABC cân tai A)
Chung góc A
Suy ra: tam giác ABD= tam giác ACE
Suy ra: BD=CE (hai cạnh tương ứng)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
Xét \(\Delta\)BEC và \(\Delta\)CDB, có:
^ABC=^ACB (\(\Delta\)ABC cân tại A)
BC _ chung
^BEC=^BDC=900
=> \(\Delta\)BEC=\(\Delta\)CDB ( g.c.g )
=> BD=EC