Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha bạn!
Cm:
a)Xét \(\Delta ABD\) và \(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90\)độ
\(\widehat{A}\)chung
AB=AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\)(cạnh huyền-góc nhọn)
=> AD=AE (2 cạnh tương ứng)
(ĐPCM)
b) Vì AD=AE(cmt) =>\(\Delta ADE\)cân tại A
=> \(\widehat{AED}=\widehat{ADE}\)
\(\Delta ADE\)có: \(\widehat{A}+\widehat{AED}+\widehat{ADE}=180\)độ
\(\Rightarrow\widehat{AED}=\frac{180^0-\widehat{A}}{2}\)(1)
\(\Delta ABC\)cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
\(\Delta ABC\)có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)
Mà 2 góc này ở vị trí đồng vị
=>DE//BC (đpcm)
c) Xét \(\Delta AIE\)và \(\Delta AID\)có:
\(\widehat{AEI}=\widehat{ADI}=90^0\)
AI chung
AE=AD (cmt)
=> \(\Delta AIE\)=\(\Delta AID\)(cạnh huyền-cạnh góc vuông)
=> \(\widehat{EAI}=\widehat{DAI}\)(2 góc tương ứng)
=> AI là tia phân giác của góc BAC (3)
Xét \(\Delta ABM\)và \(\Delta ACM\)có:
AM chung
BM=CM (gt)
AB=AC (gt)
=>\(\Delta ABM\)=\(\Delta ACM\)(c.c.c)
=>\(\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)
=>AM là tia phân giác của góc BAC (4)
Từ (3) và (4) => A,I,M thẳng hàng (đpcm)
Câu d tớ chịu!
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).