Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A D E M N I H K
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
a, Tam giác ABC có AB=AC (gt)
=> ∆ ABC cân tại A ( tính chất tam giác cân )
do đó góc B = góc C ( hai góc ở đáy )
Ta có : góc ABC = góc ECN ( hai góc đối đỉnh )
Xet ∆ vg BDM va ∆ vg CEN co :
BD=CE ( gt )
góc ABD = góc ECN ( cùng bằng góc ACB )
=> ∆ vuông góc BDM = ∆ vuông góc ECN ( cạnh góc vuông và góc nhọn kề cạnh ấy )
Do đó DM = EN ( hai cạnh tương ứng )
b) Ta có: MD vuông góc với BE
BE vuông góc với EN
=>MD//EN => góc DMI = góc INE(so le trong)
Xét ∆ MDI và ∆ IEN ta có:
MD=EN(vì ∆ MBD = ∆ CEN)
góc MDI = góc IEN(=90 độ)
góc DMI = góc INE(cmt)
=>∆ MDI = ∆ IEN(CGV-GN)
=>IM=IN(ctư)
=>đường thẳng BC cắt MN tại trung điểm I của MN
c)Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại K
H là chân đường vuông góc kẻ từ A xuống BC
Xét ∆ ABK và ∆ ACK có
AK là cạnh chung
AB=AC(cmt)
Góc BAK=góc KAC
suy ra tam giác ABK = tam giác ACK (c-g-c)
suy ra KB=KC nên K € AH đường trung trực của BC
Mặt khác :Từ ∆ DMB= ∆ ENC(câu a)
Ta có : BM=CN
BK=CK(cmt)
góc MBK=góc NCK=90 độ
Nên ∆ BMK = tam giác CNK(c-g-c)
suy ra MK=NK hay đường trung trực của MN luôn đi qua điểm K cố định (đpcm)
Do dài mình viết tắc nhìu. Bạn thông cảm
Bạn vào YouTube và đăng kí kênh nha. Kênh tên là CT CATTER
CHÚC BẠN HỌC TỐT!!!!!
Tk cho mình nha
Chúc bạn học tốt
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
DB=CE
\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBD=ΔNCE
Suy ra: DM=EN
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)