K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

A B C D E

16 tháng 1 2018

a, Góc AEC chắn cung AC

Và góc ACB chắn cung AB

Mà: Cung AB = Cung AC

\(\Rightarrow\) Góc AEC = Góc ACB

b, Xét 2 tam giác AEC và tam giác ACD, ta có:

Góc EAC là góc chung

Góc AEC = Góc ACB (Cmt)

\(\Rightarrow\) Tam giác AEC đồng dạng Tam giác ACD (g.g)

29 tháng 1 2019

Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối 

c/ Xét tam giác ABF và tam giác AEC ta có :

Góc BAF = góc CAE ( AF là phân giác)

góc ABF = góc AEC ( 2 góc nt chắn cung AC)

=>tam giác ABF đồng dạng tam giác AEC (g-g)

=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF

d/ Xét tam giác ABF và tam giác CFE ta có:

góc ABF = góc FEC ( 2 góc nt chắn cung AC )

góc BAF = góc FCE (2 góc nt chắn cung EB )

=> tam giác ABF đồng dạng tam giác CEF (g-g)

=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE

Ta có AF.AE=AB.AC (cmt)

          AF.FE=BF.CF (cmt)

=> AF.AE-AF.FE = AB.AC - BF.CF

=> AF(AE-FE) = AB.AC - BF.CF

=> \(AF^2=AB.AC-BF.CF\)

3 tháng 4 2020

a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)

b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)

c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)

6 tháng 2 2019

A B C O E F S T I Q K D N J L P M G R

a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI 

Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC

= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).

+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.

Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR

=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)

=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp 

=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).

b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM

Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M

Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K

Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)

Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng

Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L

=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).

c) Gọi P là trực tâm của \(\Delta\)AJQ

Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI

Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)

Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp

^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900

=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).

d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC

Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]

Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900

Ta xét thứ tự các điểm trên cạnh AC: 

+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)

=> ^IES = ^IFT < 900  => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK

Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)

+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800

=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\)   (**)

Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).

2 tháng 11 2018

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

15 tháng 10 2018

O O' A B M C D P Q K

a) Xét tứ giác ADBC: Nội tiếp đường tròn (O') => ^BCD = ^BAD (2 góc nội tiếp cùng chắn cung BD). Hay ^BCD = ^BAQ (1)

Ta thấy: ^BAQ = ^BPQ (2 góc nội tiếp cùng chắn cung BQ) (2)

Từ (1);(2) => ^BCD = ^BPQ

Do tứ giác ADBC nội tiếp (O') nên ^DBC = ^DAP (Cùng phụ ^CAD) hay ^DBC = ^QAP

Mà ^QAP = ^QBP (Cùng chắn cung PQ) nên ^DBC = ^QBP 

Xét \(\Delta\)BCD và \(\Delta\)BPQ có: ^BCD = ^BPQ; ^DBC = ^QBP  => \(\Delta\)BCD ~ \(\Delta\)BPQ (g.g) (đpcm).

b) Ta có: ^BCD = ^BPQ (cmt) => ^BCK = ^BPK => Tứ giác BKPC nội tiếp đường tròn 

=> (KPC) đi qua B. Mà B cố định nên (KPC) luôn đi qua 1 điểm cố định khi M chạy trên tia đối AB (đpcm).

c) Theo t/c góc tạo bởi tiếp tuyến và dây cung: ^MCA = ^MBC

Xét \(\Delta\)MAC và \(\Delta\)MCB có: ^MCA = ^MBC; ^BMC chung => \(\Delta\)MAC ~ \(\Delta\)MCB (g.g)

=> \(\frac{BC}{AC}=\frac{MB}{MC}\). Tương tự: \(\frac{AD}{BD}=\frac{MD}{MB}\) 

=> \(\frac{AD.BC}{AC.BD}=\frac{MB.MD}{MB.MC}=\frac{MD}{MC}=1\)(MD=MC theo t/c 2 tiếp tuyến cắt nhau) => \(\frac{AD}{AC}.\frac{BC}{BD}=1\)(3)

Xét \(\Delta\)BPC và \(\Delta\)BQD có: ^BPC = ^BQD (Cùng chắn cung AB); ^BCP = ^BDQ (Cùng phụ ^BDA)

=> \(\Delta\)BPC ~ \(\Delta\)BQD (g.g)  => \(\frac{BC}{BD}=\frac{PC}{QD}\)(4)

Từ (3) và (4) => \(\frac{AD}{AC}.\frac{PC}{QD}=1\) hay \(\frac{AD}{QD}.\frac{PC}{AC}=1\)               (5)

Áp dụng ĐL Melelaus cho \(\Delta\)APQ ta có: \(\frac{QK}{PK}.\frac{AD}{QD}.\frac{PC}{AC}=1\)    (6)

Thế (5) vào (6), suy ra: \(\frac{QK}{PK}=1\) => QK = PK => K là trung điểm PQ

Xét đường tròn (O) có: Dây cung PQ với K là trung điểm PQ => OK vuông góc với PQ (đpcm).