Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN(cmt)
Do đó: ΔAMO=ΔANO(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAMO=ΔANO(cmt)
nên \(\widehat{MAO}=\widehat{NAO}\)(hai góc tương ứng)
hay \(\widehat{BAH}=\widehat{CAH}\)
mà tia AH nằm giữa hai tia AB,AC
nên AH là tia phân giác của \(\widehat{BAC}\)
c) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH chung
Do đó: ΔAHB=ΔAHC(c-g-c)
Suy ra: HB=HC(hai cạnh tương ứng)
Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay \(AH\perp BC\)(đpcm)
Hình vẽ : tự vẽ
a) Ta có : tan giác ABC cân tại A ( gt )
\(\Rightarrow\) \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)( t/c \(\Delta\) cân )
Ta có : AB = AC ( cmt )
Mà : M là trung điểm của AB ( gt ), N là trung điểm của AC ( gt )
\(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\)
\(\Rightarrow AM=AN\)
Xét : \(\Delta\)AMO và \(\Delta\)ANO có
Cạnh AO chung
AM =AN (cmt )
\(\widehat{AMO}=\widehat{ANO}=90^0\left(CM\perp AB,BN\perp AC\right)\)
\(\Rightarrow\Delta AMO=\Delta ANO\left(ch-cgv\right)\)
b) Có \(\Delta AMO=\Delta ANO\left(cmt\right)\)
\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) ( 2 cạnh tương ứng )
Ta có :
\(\widehat{MAO}=\widehat{NAO}\left(cmt\right)\)
Mà : Tia AH nằm giữa tia AB và tia AC
\(\Rightarrow\) AH là tia phân giác của \(\widehat{A}\) ( đpcm )
c) Ta có :
\(\Delta ABC\) cân tại A ( gt ), AH là tia phân giác của \(\widehat{A}\) ( cmt )
\(\Rightarrow\) AH cùng là đường cao và trung truyến
\(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\HB=HC\end{matrix}\right.\)( tính chất đường cao và trung tuyến )
d) Ta có :
\(AH\perp BC\left(cmt\right)\)
\(\Rightarrow\widehat{OHC}=90^0\)
\(\Rightarrow\)OC lớn hơn HC
Mà HC = HB ( cmt )
\(\Rightarrow\) OC lớn hơn HB ( đpcm )
-Hết-
a)+) Xét ∆ ABC cân tại A
=> AB = AC. ( Tính chất ∆ cân )
=> AM = AN
Và BM = Cn
+) Xét ∆AMO vuông tại M và ∆ ANO vuông tại N có
AO cạnh chung
AM = AN (cmt )
=> ∆AMO = ∆ANO (ch - cgv )
=> OM = ON ( 2 cạnh tương ứng )
+) Xét ∆ BOM vuông tại M và ∆ CON vuông tại N có
OM = ON ( cmt )
MB= NC ( cmt )
=> ∆ BOM = ∆ CON ( 2 cạnh gv )
=> BO = CO (2 cạnh tương ứng )
Xin lỗi bạn bây h ms cs time trl
b) +) Theo câu a ta có
Δ AMO = Δ ANO
=> \(\widehat{MAO}=\widehat{NAO}\) ( 2 góc tương ứng )
=> AO là phân giác của \(\widehat{BAC}\)
Hay AH là phân giác của \(\widehat{BAC}\)
c) Éo hiểu nổi cái đề bài ((( lm theo ý hiểu )
+) Xét Δ ABH và Δ ACH có
AB = AC ( cmt)
\(\widehat{MAO}=\widehat{NAO}\) ( cmt)
AH : cạnh chung
=> Δ ABH = Δ ACH (c -g-c)
=> BH = CH ( 2 cạnh tương ứng )
Và \(\widehat{AHB}=\widehat{AHC}\) ( 2 góc tương ứng ) (1)
+) Lại có \(\widehat{AHB}+\widehat{AHC}=180^o\) ( 2 góc kề bù ) (2)
Từ (1) và (2) => \(\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\) (3)
Mặt khác AH cắt BC tại H (4)
Từ (3) và (4) => \(AH\perp BC\)
~~~ Học tốt
Takigawa Miraii
Giải thích các bước giải:
Ta có :MA=MB,MO⊥AB→MOMA=MB,MO⊥AB→MO là trung trực của AB
Tương tự NO là trung trực AC→OA=OB=OC→OA=OB=OC
Mà ΔABCΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)→AB=AC→ΔOAB=ΔOAC(c.c.c)
→ˆBAO=ˆOAC→AO→BAO^=OAC^→AO là phân giác góc A
→AH→AH là phân giacs góc A
Kết hợp ΔABCΔABC cân tại A→AH⊥BC,HB=HC
Chúc bạn học tốt
Ta có :MA=MB,MO⊥AB→MOMA=MB,MO⊥AB→MO là trung trực của AB
Tương tự NO là trung trực AC→OA=OB=OC→OA=OB=OC
Mà ΔABCΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)→AB=AC→ΔOAB=ΔOAC(c.c.c)
→ˆBAO=ˆOAC→AO→BAO^=OAC^→AO là phân giác góc A
→AH→AH là phân giacs góc A
Kết hợp ΔABCΔABC cân tại A→AH⊥BC,HB=HC
tự vẽ hình nha!^^
1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)
b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ
\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ
mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)
2/a/\(Xét\Delta ABIva\Delta HBIcó:\)
góc BAI=BHI=90 độ
BỊ chung;góc B1=góc B2
Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)
b/ vì IA=IH(do tgiac ABI=tgiac HBI)
Vậy tam giác AIH cân tại I
c/Vì AB=AH(do tam giác BIA= tam giác BIH)
\(\Rightarrow\)tam giác BAH cân tại B
mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)
\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a,Xét tam giái AMO và tam giác ANO, ta có:
+ Góc M = góc N =90 ( gt)
+ Có cạnh AO chung
==> hai tam giác này bằng nhau
b, Vì tam giác AMO = tam giác ANO nên góc MAO = góc NAO
==> AO là tia phân giác của góc A
Hay AH là tia phân giác của góc A vì A, H, O thẳng hàng.