Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\) cân tại A:
AI là đường cao (AI vuông góc BC, I thuộc BC).
\(\Rightarrow\) AI là đường trung tuyến (T/c \(\Delta\) cân).
\(\Rightarrow\) I là trung điểm BC.
Vì \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow AB=AC;\widehat{B}=\widehat{C}\) (T/c \(\Delta\) cân).
Ta có: \(EB=AB-AE;FC=AC-AF.\)
Mà \(\left\{{}\begin{matrix}AE=AF\left(gt\right).\\AB=AC\left(cmt\right).\end{matrix}\right.\)
\(\Rightarrow EB=FC.\)
Xét \(\Delta EBI\) và \(\Delta FCI:\)
\(EB=FC\left(cmt\right).\\ \widehat{B}=\widehat{C}\left(cmt\right).\)
\(IB=IC\) (I là trung điểm BC).
\(\Rightarrow\Delta EBI\) \(=\Delta FCI\left(c-g-c\right).\)
\(\Rightarrow IE=IF\) (2 cạnh tương ứng).
\(\Rightarrow\Delta IEF\) cân tại I.
Sửa đề: AI vuông góc với BC
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
mà B,I,C thẳng hàng(gt)
nên I là trung điểm của BC(đpcm)
b) Ta có: ΔAIB=ΔAIC(cmt)
nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
hay \(\widehat{EAI}=\widehat{FAI}\)
Xét ΔEAI và ΔFAI có
AE=AF(gt)
\(\widehat{EAI}=\widehat{FAI}\)(cmt)
AI chung
Do đó: ΔEAI=ΔFAI(c-g-c)
Suy ra: IE=IF(hai cạnh tương ứng)
Xét ΔIEF có IE=IF(cmt)
nên ΔIEF cân tại I(Định nghĩa tam giác cân)
c) Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà AE=AF(gt)
và AB=AC(ΔABC cân tại A)
nên EB=FC
Xét ΔEBI và ΔFCI có
EB=FC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
BI=CI(cmt)
Do đó: ΔEBI=ΔFCI(c-g-c)
a.
Ta có: I là đường cao cũng là đường trung tuyến trong tam giác cân ABC
=> I là trung điểm BC
b.
Xét tam giác AEI và tam giác AFI, có:
AE = AF ( gt )
góc EAI = góc FAI ( AI là đường cao cũng là đường phân giác )
AI: cạnh chung
Vậy tam giác AEI = tam giác AFI ( c.g.c )
=> IE = IF ( 2 cạnh tương ứng )
=> Tam giác IEF cân tại I
c.
Ta có: AB = AC ( ABC cân )
Mà AE = AF ( gt )
=> BE = CF
Xét tam giác BEI và tam giác CFI, có:
BE = CF ( cmt )
góc B = góc C ( ABC cân )
IB = IC ( gt )
Vậy tam giác BEI = tam giác CFI ( c.g.c )
Chứng minh câu a
Xét tam giác ABI và tam giác ACI có:
AI cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác ABI = tam giác ACI ( c-g-c )
Suy ra BI = CI
a) Xét tam giác ABC cân tại A
có: \(AI\perp BC⋮I\)(gt)
=> AI là đường trung tuyến của BC ( tính chất của tam giác cân)
=> BI = CI ( định lí đường trung tuyến)
=> I là trung điểm của BC
b) Xét tam giác ABC cân tại A
có: AI là đường trung tuyến của BC ( phần a)
=> AI là đường phân giác của góc A ( tính chất của tam giác cân)
=> góc BAI = góc CAI ( tính chất tia phân giác)
Xét tam giác AEI và tam giác AFI
có: AE = AF (gt)
góc BAI =góc CAI ( chứng minh trên)
AI là cạnh chung
\(\Rightarrow\Delta AEI=\Delta AFI\left(c-g-c\right)\)
=> EI = FI ( 2 cạnh tương ứng)
=> tam giác IEF cân tại I ( định lí tam giác cân)
c) ta có: \(E\in AB\)
=> AE + EB = AB (1)
ta có: \(F\in AC\)
=> AF + FC = AC (2)
mà AB =AC
Từ (1);(2) => AE + EB = AF + FC
=> EB = FC ( AE = AF)
Xét tam giác EBI và tam giác FCI
có: EB = FC ( chứng minh trên)
góc EBI = góc FCI ( gt)
BI = CI ( phần a)
\(\Rightarrow\Delta EBI=\Delta FCI\left(c-g-c\right)\)
mk ko bít kẻ hình trên này, nên ko kẻ đâu!
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).