K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

mọi người lamf giúp mình vs ak

 

2 tháng 5 2022

mình đang cần gấp mọi ng giúp mình với ạ

 

29 tháng 3 2020

t lười vẽ hình lắm, vô cùng xin lỗi :(

a) Vì ∆ ABC cân tại A nên AH vừa là đường cao, vừa là trung tuyến => HB = HC = 12:2 = 6 

Áp dụng định lí  Py-ta-go cho ∆ AHB, ta được: AH2 + BH2 = AB2 => AB2 = 122 + 92 = 225 = 152 => AB = 15 = AC

=> PABC = AB + AC + BC = 15 + 15 + 18 = 48

b) Vì BM = CN (gt) ; HB = HC (cmt) => HB + BM = HC + CN => HM = HN => AH là trung tuyến của ∆ AMN (1)

 Lại có: AH ┴ BC hay AH ┴ MN => AH là đường cao của ∆ AMN (2)

Từ (1) và (2) =>∆ AMN cân tại A

c) Xét ∆ BIM và ∆ CKN vuông tại I và K có:

MB = NC (gt) ; ^KNC = ^IMB (∆AMN cân tại A) => ∆ BIM = ∆ CKN ( ch - gn ) => MI = KN

Mà AM = AN (∆AMN cân tại A) => AI = AK => ∆ AIK cân tại A

=> ^AIK = ^AKI = ( 180o - ^MAN ) : 2 = ^AMN = ^ANM => IK // MN (đồng vị) hay IK // BC

d) Vì IK // MN => ^IKN = ^KCN (slt) ; ^KIB = ^IBM (slt)

    Lại có: ^IBM = ^KCN ( vì ∆BIM=∆CKN ) => ^IKN = ^KIB hay ^OIK = ^OKI => ∆OKI cân tại O => OK = OI

Xét ∆ AIO và ∆ AKO có:

AI = AK ( ∆AIK cân tại A) ; OK = OI (cmt) ; AO (chung) => ∆ AIO = ∆ AKO ( c-c-c )

=> ^OAI = ^OAK (3)

Vì ∆AMN cân tại A => AH là phân giác của ∆AMN.=> ^HAM = ^HAN hay ^HAI = ^HAK (4)

Từ (3) và (4) => A, O, H thẳng hàng.

Ya, that's it!

16 tháng 4 2020

Kien thuc nay ai da duoc hoc ma hieu 

crazy girl

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0
26 tháng 2 2020

a, Xét △BAH vuông tại H và △CAH vuông tại H

Có: AH là cạnh chung

       AB = AC (gt)

=> △BAH = △CAH (ch-cgv)

=> BH = CH (2 cạnh tương ứng)

Mà H nằm giữa B, C

=> H là trung điểm BC

Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2  

=> AH2 = 102 - 62 

=> AH2 = 64

=> AH = 8 (cm)

b, Ta có: MH = MB + BH và HN = HC + CN

Mà BH = HC (cmt) ; MB = CN (gt)

=> MH = HN

Xét △MHA vuông tại H và △NHA vuông tại H

Có: AH là cạnh chung

      MH = HN (cmt)

=> △MHA = △NHA (2cgv)

=> HMA = HNA (2 góc tương ứng)

Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A

c, Xét △MBE vuông tại E và △NCF vuông tại F

Có: EMB = FNC (cmt)

      MB = CN (gt)

=> △MBE = △NCF (ch-gn)

=> MBE = NCF (2 góc tương ứng)

d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)

=> AH là phân giác của MAN

Ta có: AE + EM = AM và AF + FN = AN 

Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)

=> AE = AF

Xét △EAK vuông tại E và △FAK vuông tại F

Có: AK là cạnh chung

       AE = AF (cmt)

=> △EAK = △FAK (ch-cgv)

=> EAK = FAK (2 góc tương ứng)

=> AK là phân giác EAF => AK là phân giác MAN

Mà AH là phân giác của MAN

=> AK ≡ AH 

=> 3 điểm A, H, K thẳng hàng