Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HB=HC
AH CẠNH CHUNG
AB=AC (CẠNH HUYỀN)
DO ĐÓ:AHB=AHC (C-C-C)
MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
tự vẽ hình nha!^^
1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)
b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ
\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ
mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)
2/a/\(Xét\Delta ABIva\Delta HBIcó:\)
góc BAI=BHI=90 độ
BỊ chung;góc B1=góc B2
Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)
b/ vì IA=IH(do tgiac ABI=tgiac HBI)
Vậy tam giác AIH cân tại I
c/Vì AB=AH(do tam giác BIA= tam giác BIH)
\(\Rightarrow\)tam giác BAH cân tại B
mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)
\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Để chứng minh rằng tam giác AHB = tam giác AHC và AH là tia phân giác của góc BAC, chúng ta cần sử dụng các định lý và quy tắc trong hình học. Để bắt đầu, ta đã biết: - H là trung điểm của đoạn thẳng BC - Đường thẳng d là đường thẳng góc với BC Vì H là trung điểm của BC nên ta có: AH = BH = HC (để chứng minh, chỉ cần sử dụng quy tắc về trung điểm) Giả sử ta kẻ đường thẳng HE đi qua H và góc với AB. Khi đó, ta có: - HE = HC (do AHB và AHC là tam giác cân) - AHE = 90 độ (do đường thẳng góc với AB) Từ đó, ta suy ra: - Tam giác AHB = tam giác HEB ( do cận AH = cận DH và cận BH = cận EH) - Tam giác AHC = tam giác HEC (do cận AH = cận CH và cận HC = cận EC) Vậy tam giác AHB = tam giác AHC. Ngoài ra, vì cạnh AH = cạnh HC nên AH là tia phân giác của góc BAC. Do đó, ta đã chứng minh được rằng tam giác AHB = tam giác AHC và AH là tia phân giác của góc BAC.
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AH chung
HB=HC
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
A B C H I I
a) Xét \(\Delta\)AHB và \(\Delta\)AHC có:
AB=AC (\(\Delta\)ABC cân tại A)
BH=HC (H là trung điểm BC)
AH chung
=> △AHB=△AHC (c.c.c)
b) Xét △ABC có H là trung điểm BC
=> AH là đường trung tuyến của △ABC
mà △ABC cân tại A (gt) => AH trùng với đường cao
=> AH _|_ BC. Mà H là trung điểm BC
=> AH là đường trung trực của BC (đpcm)
b) Có H là trung điểm BC => \(BH=CH=\frac{BC}{2}\)mà BC=10cm
=> \(BH=CH=\frac{10}{2}=5cm\)
Có AH _|_ BC (cmt) => △ABH cân tại H
Áp dụng định lý Pytago vào △ABH vuông tại H, ta có:
AH2+BH2=AB2
=> AH2=AB2-BH2
Thay BH=5(cm); AB=13(cm)
=> AH2=132-52
=> AH2=144
=> AH=12(cm) (AH>0)